palette
بررسی پتروگرافی و ژئوشیمی دولومیتهای سازند شهبازان در شمال غرب سمیرم: مطالعهای از فرآیند دولومیتی شدن در حاشیه شرقی حوضه فورلند زاگرس

چکیده

به منظور درک فرآیند دولومیتی شدن در حاشیه شرقی حوضه رسوبی فورلند زاگرس، دولومیت­های سازند شهبازان در رخنمونی واقع در شش کیلومتری شمال غرب سمیرم مورد مطالعات پتروگرافی و ژئوشیمی قرار گرفتند. این سازند در برش مورد مطالعه دارای ضخامت 74 متر می­باشد که در مرز پایینی به طور هم­شیب بر روی سازند آواری کشکان و در مرز بالایی توسط کربنات­های سازند آسماری به صورت ناپیوسته پوشیده شده است. براساس شواهد صحرایی، پتروگرافی) شامل میکروسکوپ­های پلاریزان و الکترونی( و ژئوشیمیایی عناصر اصلی، فرعی و عناصر نادر خاکی چهار نوع دولومیت، در سازند شهبازان تشخیص داده شده است. نتایج این تحقیق بیانگر تشکیل دولومیت­های خیلی ریز تا ریز بلور در پهنه­های جزر و مدی و سایر دولومیت­ها در یک محیط دیاژنزی دفنی کم عمق تا متوسط توسط سیالات دریایی با شوری متوسط) میانگین سدیم 363 پی­پی­ام(، در اثر تراوش آب دریای تبخیر شده به داخل پلتفرم کربناته سازند شهبازان در منطقه مورد مطالعه است. توزیع تقریباً یکسان مقادیر عناصر فرعی در برابر منیزیم در ارتباط با هر سه نوع دولومیت و همچنین مشابه بودن الگوهای ترسیم عناصر نادر خاکی (ƩREE) بیان کننده تشکیل دولومیت­های سازند شهبازان از یک نوع سیال دیاژنتیکی با منشأ یکسان می­باشد. اختلافات موجود در مقادیر عناصر نادر خاکی نشان دهنده میزان واکنش بین آب-سنگ، درجه حرارت و میزان دفن متفاوت می­باشد.

واژگان کلیدی
ژئوشیمی، سازند شهبازان، سمیرم، فورلند زاگرس، مدل دولومیتی شدن.

منابع و مآخذ مقاله

-آدابی، م.ح.، 1390. ژئوشیمی رسوبی، تهران، آرین زمین (چاپ دوم)، 503 ص.

-آقانباتي، ع.، 1385. زمينشناسي ايران، سازمان زمينشناسي و اکتشافات معدني کشور، 586 ص.

-پریزن، ن.، 1391. مطالعه رخسارههای رسوبی و دیاژنز سازندهای جهرم و آسماری در برش گردنه گلهبار، غرب سمیرم، پایاننامه کارشناسیارشد، دانشگاه اصفهان، 120 ص.

-زهدی، ا.، عاصمی، ف. و لکی روحانی، ع.، 1396. مدل دولومیتی شدن سازند سلطانیه در جنوب غرب زنجان، فصلنامه علوم زمین، زیر چاپ.

-عبدی، ا. و آدابی، م.ح.، 1388. پتروگرافی انواع دولومیت‌ها، بررسی دیاژنز، مرز احتمالی سازند شهبازان- آسماری و تفکیک رخسارهها براساس ویژگی‌های ژئوشیمیایی دولومیکرایت‌ها، شواهد پتروگرافی و روشهای آماری در برش دارابی (جنوب غرب ایران)، پژوهشهای چینهنگاری و رسوب-شناسی، شماره 25، ص 81-100.

-قریب، ف.، 1375. بررسي سنگ شناسي و محيط رسوبي سازندهاي گورپي، اميران و تاربور منطقه سميرم بخشي از ورقههاي 100000/1 کوه دنا و سميرم، پاياننامه دوره كارشناسيارشد، دانشگاه آزاد اسلامي، واحد تهران شمال، 101 ص.

-مدرس، م.ه.، فیاضی، ف.ا.، آدابی، م.ح. و مرادپور، م.، 1395. مطالعه دياژنزی سازند دولومیتی شهبازان در برش سطحی کيالو در حوضه زاگرس، سازمان زمین شناسی و اکتشاف معدنی کشور، سی و پنجمین گردهمایی علوم زمین.

-مطيعي، ه.، 1372. زمين شناسي ايران (چينه-نگاري زاگرس)، انتشارات سازمان زمين شناسي، 583 ص.

-وزیری مقدم، ح.، صفری، ا.، شهریاری گرائی، س.، طاهری، ع. و خزاعی، ا.ر.، 1389. معرفي رسوبات آواري-كربناته و آواري قرمز رنگ ماستريشتين در ناحيه زاگرس مرتفع (سمیرم-اردل)، مجله علوم دانشگاه تهران، شماره 1، ص 103-117.

-Adabi, M.H. and Rao, C.P., 1996. Petrographic, element and isotopic criteria for Central Iran: Iranian Petroleum Institute, v. 15, p. 561- 574.

-Adabi, M.H., Zohdi, A., Ghabeishavi, A. and Amiri-Bakhtiyar, H., 2008. Applications of nummulitids and other larger benthic foraminifera in depositional environment and sequence stratigraphy: an example from the Eocene deposits in Zagros Basin, SW Iran: Facies, v. 54(4), p. 499-512.

-Adabi, M.H., 2009. Multistage dolomitization of upper Jurassic Mozduran Formation, Kopet-Dagh Basin, NE Iran: Carbonates and Evaporites, v. 24(1), p. 16- 32.

-Agard, F., Omrani, J., Jolivet, J. and Mouthereau, F., 2005. Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation: International Journal of Earth Sciences, v. 94, p. 401-419.

-Al-Aasm, I.S. and Packard, J.J., 2000. Stabilization of early-formed dolomite, atale of divergence from two Mississippian dolomites: Sedimentary Geology, v. 131, p. 97-108.

-Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: New data and interpretations: Tectonophysics, v. 229, p. 211-238.

-Alibo, D.S. and Nozaki, Y., 1999. Rare earth elements in seawater: Particle association, shalenormalization, and Ce oxidation, Geochimica et Cosmochimica Acta, v. 63(3-4), p. 363-372.

-Allwood, A.C., Kamber, B.S., Walter, M.R., Burch, I.W. and Kanik, I., 2010. Trace elements record depositional history of an Early Archean stromatolitic carbonate platform: Chemical Geology, v. 270, p. 148-163.

-Amthor, J.E. and Friedman, G.M., 1992. Early to late-diagenetic dolomitization of and Petrogenesis of Dolomite Hydrocarbon Reservoirs: Journal Geological Society of London, Special Publications, v. 235, p. 99-139.

-Azmy, K., Veizer, J., Misi, A., de Oliveira, T.F., Sanches, A.L. and Dardenne, M.A., 2001. Dolomitization and isotope stratigraphy of the Vazante formation, São Francisco Basin, Brazil: Precambrian Research, v. 112(3), p. 303-329.

-Azmy, K., Knight, I., Lavoie, D. and Chi, G., 2009. Origin of the Boat Harbour dolomites of St. George Group in western Newfound land, Canada: implications for porosity controls, Bulletin of Canadian Petroleum Geology, v. 57, p. 1-24.

-Azmy, K., Brand, U., Sylvester, P., Gleeson, S.A., Logan, A. and Bitner, M.A., 2011. Biogenic and abiogenic low-Mg calcite (bLMC and aLMC): evaluation of seawater-REE composition, water masses and carbonate diagenesis: Chemical Geology, v. 280, p. 180-190.

-Azmy, K., Lavoie, D., Wang, Z., Brand, U., Al-Aasm, I., Jackson, S. and Girard, I., 2013. Magnesium-isotope and REE compositions of Lower Ordovician carbonates from eastern Laurentia: implications for the origin of dolomites and limestones: Chemical Geology, v. 356, p. 64-75.

-Azomani, E., Azmy, K., Blamey, N., Brand, U. and Al-Aasm, I., 2013. Origin of Lower Ordovician dolomites in eastern Laurentia: Controls on porosity and implications from geochemistry: Marine and Petroleum Geology, v. 40, p. 99-114.

-Barrat, J.A., Boulegue, J., Tiercelin, J.J. and Lesourd, M., 2000. Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyka, East Africa: Geochimica et Cosmochimica, v. 64, p. 287-298.

-Bau, M. and Alexander, B., 2006. Preservation of primary REE patterns without Ce anomaly during dolomitization of Mid-Paleoproterozoic limestone and the potential re-establishment of marine anoxia immediately after the “Great Oxidation Event”: South African Journal of Geology, v. 109(1-2), p. 81-86.

-Bolhar, R. and Van Kranendonk, M.J., 2007. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates: Precambrian Research, v. 155(3-4), p. 229-250.

-Bosence, D.W.J., Wood, J.L., Rose, E.P.F. and Qing, H., 2000. Low and high‐frequency sea‐level changes control peritidal carbonate cycles, facies and dolomitization in the Rock of Gibraltar (Early Jurassic, Iberian Peninsula): Journal of the Geological Sosiety, London, v. 157, p. 61-74.

-Bonnot-Courtois, C. and Flicoteaux, R., 1989. Distribution of rare-earth and some trace elements in Tertiary phosphorites from the Senegal Basin and their weathering products, Chemistry Geology, v. 75(4), p. 311-328.

-Brand, U. and Veizer, J., 1980. Chemical diagenesis of multicomponent carbonate system, II: Stable isotopes: Journal of Sedimentary Petrology, v. 51, p. 987-997.

-Cai, C., Li, K., Li, H. and Zhang, B., 2008. Evidence for cross formational hot brine flow from integrated 87Sr/86Sr, REE and fluid inclusions of the Ordovician veins in Central Tarim, China: Applied Geochemistry, v. 23(8), p. 2226-2235.

-Callen, J.M., 2016. In Situ Geochemistry of Middle Ordovician Dolomites of the Upper Mississippi Valley: Evaluation of the Dorag Model and New Implications for Dolomitizing Fluids: Master dissertation, Louisiana State University, 88 p.

-Chen, Y., Zhou, X., Zhao, K., Yang, W. and Dong, C., 2009. The petrologic rhythm of Lower Ordovician Penglaiba Formation encountered by Well Tazhong 19 and new dolomitization model, Tarim basin: Sedimentological Sinica, v. 27(2), p. 202-210.

-Dickson, J.A.D., 1965. A modified staining technique for carbonates in thin section: Nature, v. 205, p. 587-604.

-Franchi, F., Turetta, C., Cavalazzi, B., Corami, F. and Barbieri, R., 2016. Trace elements and REE geochemistry of Middle Devonian carbonate mounds (Maïder Basin, Eastern Anti-Atlas, Morocco): Implications for early diagenetic processes: Sedimentary Geology, v. 343, p. 56-71.

-Frimmel, H.E., 2009. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator: Chemical Geology, v. 258(3-4), p. 338-353.

-Gregg, J.M. and Sibley, D.F., 1984. Epigenetic dolomitization and the origin of xenotopic dolomite texture: Journal of Sedimentary Petrology, v. 54, p. 908-931.

-Gregg, J.M. and Shelton, K.L., 1990. Dolomitization and dolomite neomorphism in the back reef facies of the Bonneterre and Davis formations (Cambrian), southeastern Missouri: Journal of Sedimentary Petrology, v. 60, p. 549-562.

-Haeri-Ardakani, O., Al-Aasm, I. and Coniglio, M., 2013. Petrologic and geochemical attributes of fracture-related dolomitization in Ordovician carbonates and their spatial distribution in southwestern Ontario, Canada: Marine and Petroleum Geology, v. 43, p. 409-422.

-Heydari, E., 2008. Tectonics versus eustatic control on supersequences of the Zagros Mountains of Iran: Tectonophysics, v. 451, p. 56-70.

-Homke, S., Verges, J., Garces, M., Emami, H. and Karpuz, R., 2004. Magnetostratigraphy of Miocene–Pliocene Zagros foreland deposits in the front of the Push-e Kush Arc (Lurestan Province, Iran): Earth and Planetary Science Letters, v. 225, p. 397-410.

-Hou, Y., Azmy, K., Berra, F., Jadoul, F., Blamey, N.J.F., Gleeson, S.A. and Brand, U., 2016. Origin of the Breno and Esino dolomites in the western southern Alps (Italy): implications for a volcanic influence: Marine and Petroleum Geology, v. 69, p. 38-52.

-Hu, W., Chen, Q., Wang, X. and Cao, J., 2010. REE models for the discrimination of fluids in the formation and evolution of dolomite reservoirs: Oil Gas Geology, v. 31(6), p. 810-818.

-Kirmaci, M.Z. and Akdag, K., 2005. Origin of dolomite in the Late Cretaceous-Paleocene limestone turbidites, Eastern Pontides, Turkey: Sedimentary Geology, v. 181, p. 39-57.

-Kirmaci, M.Z., 2008. Dolomitization of the late Cretaceous-Paleocene platform carbonates, Golkoy (Ordu), eastern Pontides, NE Turkey: Sedimentary Geology, v. 203, p. 289-306.

-Land, L.S. and Hoops, G.K., 1973. Sodium in carbonate sediments and rocks; a possible index to the salinity of diagenetic solutions: Journal of Sedimentary Petrology, v. 43(3), p. 614-617.

-Land, L.S., 1985. The origin of massive dolomite, summary and suggestion: Journal of Geological Education, v. 33, p. 112-125.

-Land, L.S., 1986. Environments of limestone and dolomite diagenesis: some geochemical considerations: in Bathurst, R.G.C. and Land L.S. (Eds), Carbonate Depositional Environments, Modem and Ancient, part 5, Diagenesis: Colorado School of Mines Quarterly Journal, v. 81, p. 2641-2659.

-Last, F.M., Last, W.M. and Halden, N.M., 2012. Modern and late Holocene dolomite formation: Manito Lake, Saskatchewan, Canada: Sedimentary Geology, v. 281, p. 222-237.

-Liu, C., Xie, Q., Wang, G., He, W., Song, Y., Tang, Y. and Wang, Y., 2017. Rare earth element characteristics of the carboniferous Huanglong Formation dolomites in eastern Sichuan Basin, southwest China: Implications for origins of dolomitizing and diagenetic fluids: Marine and Petroleum Geology, v. 81, p. 33-49.

-Mazzullo, S.J., 1992. Geochemical and neomorphic alteration of dolomite a review: Carbonates and Evaporites, v. 7, p. 21-37.

-Middleton, K., Coniglio, M., Sherlock, R. and Frape, S.K., 1993. Dolomitization of Middle Ordovician carbonate reservoirs, southwestern Ontario: Bulletin of Canadian Petroleum Geology, v. 41(2), p. 150-163.

-Mitchell, J.T., Land, L.S. and Miser, D.E., 1987. Modern marine dolomite cement in a North Jamaica fringing reef: Geology, v. 15, p. 557-560.

-Modarres, M.H., Adabi, M.H., Fayazi, F., Ghobishavi, A. and Moradpour, M., 2018. Petrography and geochemical composition of the middle Eocene, the Shahabazan Formation at Kialu Section, Zagros Basin, Southwestern Iran: Carbonates and Evaporites, DOI:10.1007/s13146-018-0438-xs.

-Olanipekun, B.J., Azmy, K. and Brand, U., 2014. Dolomites of the Boat Harbour Formation in the Northern Peninsula, western Newfoundland, Canada: Implications for dolomitization history and porosity control: American Association of Petroleum Geologists, Bulletin, v. 98(4), p. 765-791.

-Oliveri, E., Neri, R., Bellanca, A. and Riding, R., 2010. Carbonate stromatolites from aMessinian hypersaline setting in the Caltanissetta Basin, Sicily: petrographic evidence of microbial activity and related stable isotope and rare earth element signatures: Sedimentology, v. 57, p. 142-161.

-Qing, H. and Mountjoy, E.W., 1994. Rare earth element geochemistry of dolomites in the Middle Devonian Presqu’ile barrier, Western Canada Sedimentary Basin: Implications for fluid-rock ratios during dolomitization: Sedimentology, v. 41(4), p. 787-804.

-Rivers, J.M., Kyser, K. and James, N.P., 2012. Salinity reflux and dolomitization of southern Australian slope sediments: the importance of low carbonate saturation levels: Sedimentology, v. 59, p. 445-465.

-Saller, A.H., 1984. Petrologic and geochemical constrains on the origin of subsurface dolomite, Eniwetak Atoll, an example of dolomitization by normal seawater: Geology, v. 12, p. 217-220.

-Shields, G.A. and Webb, G.E., 2004. Has the REE composition of seawater changed over geological time?: Chemical Geology, v. 204, p. 103-107.

-Shields, G. and Stille, P., 2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites: Chemical Geology, v. 175, p. 29-48.

-Sholkovitz, E. and Shen, G.T., 1995 The incorporation of rare earth elements in modern coral: Geochimica et Cosmochimica, v. 59(13), p. 2749-2756.

-Sibley, D.F. and Gregg, J.M., 1987. Classifcation of dolomite Rock textures: Journal of Sedimentary Petrology, v. 54, p. 908-931.

-Sperber, C.M., Wilkinson, B.H. and Peacor, D.R., 1948. Rock composition, dolomite stoichiometry and rock/water reactions in dolomitic carbonate rocks: Journal of Geology, v. 92(6), p. 609-622.

-Tucker, M.E. and Wright, V.P., 1990. Carbonate Sedimentology: Blackwell, Oxford, 482 p.

-Veizer, J., Hinton, R.W., Clayton, R.N. and Lerman, A., 1987. Chemical diagenesis of carbonates in thin-sections: Ion microprobe as a trace element tool: Chemical Geology, v. 64(3) p. 225-237.

-Veizer, J., 1983. Chemical diagenesis of carbonates: theory and application of trace element technique, In: Arthur, M.A., Anderson, T.F., Kaplan, I.R., Veizer, J., Land L.S. (Eds), Stable Isotopes: Sedimentary Geology, Society of Economic Paleontologists and Mineralogists Short Course Notes, v. 10, p. III-1-III-100.

-Wang, X., Jin, Z., Hu, W., Zhang, J., Qian, Y., Zhu, J. and Li, Q., 2009. Using in situ REE analysis to study the origin and diagenesis of dolomite of Lower Paleozoic, Science in China Series D: Earth Sciences, v. 52(5), p. 681-693.

-Whitaker, F.F., Smart, P.L., Vahrenkamp, V.C., Nicholson, H. and Wogelius, R.A., 1994. Dolomitization by near-normal seawater? Field evidence from the Bahamas Dolomites: A Volume in Honour of Dolomieu, p. 111-132.

-Whitaker, F.F., Smart, P.L. and Jones, G., 2004. Dolomitization From conceptual to numerical models: Geological Society, London, Special Publications, v. 235(1), p. 99-139.

-Wilson, M.E.J., Evans, M.J., Oxtoby, N.H., Nas, D.S., Donnelly, T. and Thirlwall, M., 2007. Reservoir quality, textural evolutionand origin of fault-associated dolomites: American Association of Petroleum Geologists Bulletin, v. 91, p. 1247-1273.

-Xuefeng, Z., Wenxuan, H., Zhijun, J., Juntao, Z., Yixiong, Q., Jingquan, Z. and Xiaomin, X., 2008. REE compositions of Lower Ordovician dolomites in Central and North Tarim Basin, NW China: A potential REE proxy for ancient seawater: Acta Geologica Sinica (English edition), v. 82(3), p. 610-621.

-Zaky, A.H., Brand, U. and Azmy, K., 2015. A new sample processing protocol for procuring seawater REE signatures in biogenic and abiogenic carbonates: Chemical Geology, v. 416, p. 36-50.

-Zhang, J. and Nozaki, Y., 1996. Rare earth elements and yttrium in seawater: ICP–MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean: Geochimica et Cosmochimica Acta, v. 60, p. 4631-4644.

-Zhang, X., Hu, W., Jin, Z., Zhang, J., Qian, Y., Zhu, J., Zhu, D., Wang, X. and Xie, X., 2008. REE compositions of Lower Ordovician dolomites in Central and North Tarim Basin, NW China: A potential REE proxy for ancient seawater: Geology Sinica, v. 82(3), p. 610-621.

-Zhang, W., Guan, P., Jian, X., Feng, F. and Zou, C., 2014. In situ geochemistry of Lower Paleozoic dolomites in the northwestern Tarim basin: Implications for the nature, origin, and evolution of diagenetic fluids: Geochemistry, Geophysics, Geosystems, v. 15, p. 2744-2764.

-Zhao, C., Yu, B., Zhang, C., Chen, Y. and Qi, X., 2012. A discussion on the formation mechanism of dolomite associated with hydrothermal solution in Tazhong area: Petrology and Mineralogy, v. 31(2), p. 164-172.

-Zhao, H. and Jones, B., 2013. Distribution and interpretation of rare earth elements and yttrium in Cenozoic dolostones and limestones on Cayman Brac, British West Indies: Sedimentary Geology, v. 284, p. 26-38.

-Zohdi, A., Moallemi, S.A., Moussavi-Harami, R. and Mahboubi, A., 2014. Shollow burial dolomitization of an Eocene carbonate platform, Southeast Zagros Basin: Iran GeoArabia, v. 19(4), p. 17-54.


ارجاعات
  • در حال حاضر ارجاعی نیست.