palette
کمي‌سازي عدم قطعيت سهم منابع رسوب تپه‌هاي ماسه‌اي با استفاده از روش انگشت‌نگاري مونت‌کارلو (مطالعه موردي: تپه‌هاي ماسه‌اي جازموريان، جنوب استان کرمان)
مجتبی دولت کردستانی, حمید غلامی, سید جواد احمدی, دزموند ولینگ, ابوالحسن فتح ابادی

چکیده

امروزه استفاده از تکنيک انگشت­نگاري رسوب در تعيين سهم منابع رسوبات در حال افزايش مي­باشد، بنابراين توجه به آناليز عدم قطعيت در طي فرآيند مدل­سازي ضروري مي­باشد. در اين تحقيق به منظور بررسي عدم قطعيت سهم منابع رسوبات تپه­هاي ماسه­اي در منطقه جازموريان، استان کرمان از تکنيک انگشت­نگاري مونت­کارلو مورد استفاده قرار گرفت. بدين منظور، پس از انتخاب ترکيب بهينه از ردياب­ها توسط يک فرآيند آماري دو مرحله­اي شامل آزمون­هاي کروسکال واليس و آناليز تابع تشخيص، مدل ترکيبي Collins با 10000 بار تکرار در MATLAB اجرا گرديد و محدوده­ي عدم قطعيت مربوط به سهم منابع رسوبات تپه­هاي ماسه­اي در سطح اطمينان 95 درصد (صدک­هاي 5/2 و 5/97 درصد) محاسبه گرديد. بر طبق نتايج، از بين ده ردياب اندازه­گيري شده، 4 ردياب شامل Cr، Ni، Li و Co به­عنوان ترکيب بهينه انتخاب شدند و در نهايت به­عنوان پارامتر ورودي به فرآيند مدل­سازي در نظر گرفته شدند. عدم قطعيت کامل (%100-0) در سهم منابع به­ويژه در Qs و Qal و براي برخي نمونه­هاي رسوب ديگر، منبع Qt محاسبه گرديد و دو منبع اول در بيشتر نمونه­هاي رسوب بيشترين عدم قطعيت نشان دادند و هم­چنين به علت وزش بادهاي چند جهته در منطقه، منابع تامين­کننده رسوب براي نمونه­هاي مختلف تپه­هاي ماسه­اي نيز متغير مي­­باشد. با توجه به کارايي بالاي اين تکنيک، استفاد از اين روش در مناطقي با تپه­هاي ماسه­اي فعال به منظور شناسايي منابع آنها، کمي کردن سهم منابع و بررسي عدم قطعيت آنها توصيه مي­شود.

واژگان کلیدی
انگشت‌نگاري، عدم قطعيت، مونت‌کارلو، سهم منابع، جازموريان.

منابع و مآخذ مقاله

-غلامي، ح.، فيض‌نيا، س.، احمدي، ج.، احمدي، ح.، نظري ساماني، ع.ا. و نوحه‌گر، ا.، 1393. تعيين سهم رخساره‌هاي ژئومورفولوژي در توليد رسوبات بادي با بهره‌گيري از روش رديابي رسوبات (بررسي موردي: تپه‌هاي ماسه‌اي اشکذر)، مديريت بيابان، شماره 4، پاييز و زمستان 1393، ص 31-42.

-غلامي، ح.، طاهري مقدم، ا.، نجفي قيري، م. و مهدوي نجف‌آبادي، ر.، 1394. تعيين سهم کاربري‌هاي اراضي در توليد رسوب تپه‌هاي ماسه‌اي با استفاده از روش انگشت‌نگاري (منطقه مورد مطالعه: ارگ نگار بردسير، استان کرمان)، پژوهش-هاي فرسايش محيطي، شماره 5 (2)، ص 46-54.

-Brosinsky, A., Foerster, S., Segl, K., Lopez-Tarazan, J.A., Pique, G. and Bronstert, A., 2014. Spectral fingerprinting: characterizing suspended sediment sources by the use of VNIR-SWIR spectral information, Journal of Soils and Sediments, doi:10.1007/s11368-014-092-z.

-Brown, A.G., 1985. The potential use of pollen in the identification of suspended sediments sources, Earth Surface Processes and Landforms, v. 10, p. 27-32.

-Caitcheon, G.G., 1993. Sediment source tracing using environmental magnetism: a new approach with examples from Australia, Hydrology Processes, v. 7, p. 349-358.

-Chen, F., Fang, N. and Shi, Z., 2016. Using biomarkers as fingerprint properties to identify sediment sources in a small catchment, Science of the Total Environment, v. 557-558, p. 123–133, doi:10.1016/j.scitotenv, 2016.03.028.

-Collins, A.L., Walling, D.E. and Leeks, G.J.L., 1997. Fingerprinting the origin of fluvial suspended sediment in larger river basins: combining assessment of spatial provenance and source type, Geografiska Annaler, v. 79, p. 239-254.

-Collins, A.L., Walling, D.E., Stroud, R.W., Robson, M. and Peet, L.M., 2010. Assessing damaged road verges as a suspended sediment source in the Hampshire Avon catchment, southern United Kingdom, Hydrological Processes, v. 24, p.1106-1122, doi: 10.1002/ hyp.7573.

-Collins, A.L., Williams, L.J., Zhang, Y.S., Marius, M., Dungait, J.A.J., Smallman, D.J. and Naden, P.S., 2014. Sources of sediment ‐bound organic matter infiltrating spawning gravels during the incubation and emergenc e life stages of salmonids, Agriculture, Ecosystems and Environment, v. 196, p. 76-93, doi.org/10.1016/ j.agree. 2014.06.018.

-Collins, A.L., Zhang, Y.S., Duethmann, D., Walling, D.E. and Black, K.S., 2013. Using a novel tracing-tracking framework to source fine-grained sediment loss to watercourses at sub-catchment scale, Hydrological Processes, v. 27 (6), p. 959-974, doi:10.1002/ hyp. 9652.

-Collins, A.L., Zhang, Y., Walling, D.E., Grenfell, S.E., Smith, P., Grischeff, J. and Brogden, D., 2012. Quantifying fine-grained sediment sources in the River Axe Catchment, southwest England: Application of a Monte-Carlo numerical modelling framework incorporating local and genetic algorithm optimisation, Hydrological Processes, v. 26 (13), p. 1962–1983, doi:10.1002/hyp.8283.

-Cooper, R.J., Krueger, T., Hiscock, K.M. and Rawlins, B.G., 2014. Sensitivity of fluvial sediment source apportionment to mixing model assumptions: A Bayesian model comparison, Water Resourecs Reaserch, v. 50, p. 9031-9047. doi:10.1002/2014WR016194.

-Cooper, R.J., Krueger, T., Hiscock, K.M. and Rawlins, B.G., 2015. High-temporal resolution fluvial sediment source fingerprinting with uncertainty: A Bayesian approach, Earth Surface Processes and Landforms, v. 40(1), p. 78-92, doi:10.1002/esp, 3621.

-Douglas, G.B., Gray, C.M., Hart, B.T. and Beckett, R., 1995. A Strontium isotopic investigation of the origin of suspended partculate matter (SPM) in the Murray-Darling river system, Australia, Chemical Geology, v. 59, p. 3799-3815.

-Dutton, C., Anisfeld, S.C. and Ernstberger, H., 2013. A novel sediment fingerprinting method using filtration: Application to the Mara River, East Africa, Journal of Soils and Sediments, v. 13(10), p. 1708-1723, doi:10.1007/s11368-013-0725-z.

-East, A.E., Clift, P.D., Carter, A., Alizai, A. and VanLaningham, S., 2015. Fluvial-eolian interactions in sediment routing and sedimentary signal buffering: an example from the Indus Basin and Thar Desert, J. Sediment, Res, v. 85, 715e72 8.

-Foster, I.D.L. and Walling, D.E., 1994. Using reservoir deposits to reconstruct changing sediment yields and sources in catchments of Old Mill Reservoir, South Devon, UK, over the past 50 years, Hydrological Sciences Journal, v. 39, p. 347-368.

-Garzanti, E., Ando, S., Vezzoli, G., Lustrino, M., Boni, M. and Vermeesch, P., 2012. Petrology of the Namib sand sea: Long-distance transport and compositional variability in the wind-displaced Orange Delta, Earth Sci, Rev, v. 112, 173e18 9.

-Gholami, H., Middleton, N., Nzari Samani, A. and Wasson, R., 2017a. Determining contribution of sand dune potential sources using radionuclides, trace and major elements in central Iran, Arab J Geosci, v. 10, p. 1-9, doi, 10.1007/s12517-017-2917-0.

-Gholami, H., Telfer, M.W., Blake, W.H. and Fathabadi, A., 2017. Aeolian sediment fingerprinting using a Bayesian mixing model, Earth Surf, Process, Landforms, v. 42, p. 2365-2376. doi: 10.1002/esp.4189.

-Grimshaw, D.L. and Lewin, J., 1980. Source identification for suspended sediment, Journal of Hydrology, v. 47, p. 151-162.

-Hasholt, B., 1988. On identification of sources of sediment transport in small basins with special reference to particulate phosphorus, In: Boards, M.P. and Walling, D.E., (Eds), Sediment budgets, IAHS Publ, No, 174, IAHS Press, Wallingford, p. 241-250.

-Horowitz, A.J., 2017. A question of uncertainty, Hydrologcal Processes, 1-2. doi. 10, 1002/hyp.111 42.

-Hughes, A.O., Olley, J.M., Croke, J.C. and McKergow, L.A., 2009. Sediment source changes over the last 250 years in a dry-tropical catchment, central Queensland, Australia, Geomorphology, v. 104, p. 262-275, doi.org/10.1016/ j.geomorph.2008.09.003.

-Klages, M.G. and Hsieh, Y.P., 1975. Suspended solids transported by the Gallatin river of southern Montana: II using mineralogy for inferring sources, Journal of Environmental Quality,v. 4, p. 68-73.

-Lamba, J., Karthikeyan, K.G. and Thompson, A.M., 2015. Apportionment of suspended sediment sources in an agricultural watershed using sediment fingerprinting, Geoderma, v. 239-240, p. 25-33, doi:10.1016/j.geoderma.2014.09.024.

-LeGall, M., Evrard, O., Foucher, A., Laceby, J.P., Salvador-Blanes, S., Thill, O., Dapoigny, A., Lefèvre, I., Cerdan, O. and Ayrault, S., 2016. Quantifying sediment sources in a lowland agricultural catchment pond using 137 Cs activities and radiogenic 87Sr/86Sr ratios, Science of the Total Environment, v. 566-567, p. 968-980, doi: j.scitotenv, 2016.05.093.

-Liu, B., Niu, Q., Qu, J. and Zu, R., 2016a. Quantifying the provenance of aeolian sediments using multiple composite fingerprints, Aeolian Research, v. 22, p. 117-122, dx.doi.org/ 10.1016/j.aeolia.2016.08.002.

-Lorenz, R.D. and Zimbelman, J.R., 2014. Dune Worlds: How Windblown Sand Shapes

Planetary Landscapes, Springer, 308 p.

-Massoudieh, A., Gellis, A., Banks, W.S. and Wieczorek, M.E., 2013. Suspended sediment source apportionment in Chesapeake Bay Watershed using Bayesian chemical mass balance receptor modeling, Hydrological Processes, v. 27(24), p. 3363-3374, doi:10.1002/hyp.9429.

-Morton, A.C., 1991. Geochemical studies of detrital heavy minerals and their application to provenance research, Geological Society Special Publication, v. 57, p. 31-45.

-Motha, J.A., Wallbrink, P.J., Hairsine, P.B. and Grayson, R.B., 2003. Determining the sources of suspended sediment in a forested catchment in southeastern Australia, Water Resources,v.39(3),p.1-14, doi:10.1029/ 2001wr000794.

-Muhs, D.R., 2017. Evaluation of simple geochemical indicators of Aeolian sand provenance: Late Quaternary dune fields of North America revisited, Quaternary Science Reviews, v. 171, p. 260-296, doi.org/10.1016/j.quascirev.2017.07.007.

-Muhs, D.R., Reynolds, R., Been, J. and Skipp, G., 2003. Eolian sand transport pathways in the southwestern United States: importance of the Colorado River and local sources, Quat, Int, 104 p.

-Nosrati, K., Govers, G., Ahmadi, H., Sharifi, F., Amoozegar, M.A., Merckx, R. and Vanmaercke, M., 2011. An exploratory study on the use of enzyme activities as sediment tracers: biochemical fingerprints, International Journal of Sediment Research, v. 26, p. 136-151.

-Nosrati, K., Govers, G., Semmens, B.X. and Ward, E.J., 2014. A mixing model to incorporate uncertainty in sediment fingerprinting, Geoderma, v. 217-218, p. 173-180, doi:10.1016/j, geoderma, 2013.12.002.

-Pulley, S., Foster, I. and Antunes, P., 2015. The uncertainties associated with sediment fingerprinting suspended and recently deposited fluvial sediment in the Nene River Basin, Geomorphology, v. 228, p. 303-319,doi:10.1016/j.geomorph.2014.09.016.

-Scheidt, S., Lancaster, N. and Ramsey, M., 2011. Eolian dynamics and sediment mixing in the Gran Desierto, Mexico, determined from thermal infrared spectroscopy and remote-sensing data, Geological Society of America Bulletin, v. 123, 1628-1644.

-Smith, H.G., Blake, W.H. and Owens, P.N., 2013. Discriminating fine sediment sources and the application of sediment tracers in burned catchments: A review, Hydrological Processes, v. 27 (6), p. 943-958, doi:10.1002/hyp.9537.

-Stone, M., Collins, A.L., Silins, U., Emelko, M.B. and Zhang, Y.S., 2014. The use of composite fingerprints to quantify sediment sources in a wildfire impacted landscape, Alberta, Canada, Science of the Total Environment, v. 473-474, p. 642–650,. doi:10.1016/ j, scitotenv.2013.12.052.

-Stone, M. and Saunderson, H., 1992. Particle size characteristics of suspended sediments in southern Ontario rivers tributary to the Great Lakes, Geological Society Special Publication, v. 57, p. 31-45.

-Voli, M.T., Wegmann, K.W., Bohnenstiehl, D.R., Leithold, E., Osburn, C.L. and Polyakov, V., 2013. Fingerprinting the sources of suspended sediment delivery to a large municipal drinking water reservoir: Falls Lake, Neuse River, North Carolina, USA, Journal of Soils and Sediments, v. 13(10), p. 1692-1707, doi:10.1007/ s11368-013-0758-3.

-Walden, J., Slattery, M.C. and Burt, T.P., 1997. Use of mineral magnetic measurements to fingerprints suspended sediment sources: approaches and techniques for data analysis, Journal of Hydrology, v. 202, p. 353-372.

-Walling, D.E., 2005. Tracing suspended sediment sources in catchments and river systems, Science of the Total Environment, v. 344 (1-3), p. 159–184, doi:10.1016/ j.scitotenv.2005.02.011.

-Walling, D.E., Owens, P.N. and Leeks, G.J.L., 1999. Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK, Hydrological Processes, v. 13, p. 955-975. doi. 10, 1002/(SICI)1099-1085(199905)13:7< 955:: AID-HYP784> 3.0.CO; 2-G.

-Walling, D.E. and Woodward, J.C., 1995. Tracing sources of suspended sediment in river basins: a case study of river Culm, Devon, UK, Marin and Freshwater Research, v. 46, p. 327-336.

-Warren, A., Dunes, J. And Sons, Ltd., 2013. Chichester, 219 pp. Wilkinson, S.N., Hancock, G.J., Bartley, R., Hawdon, A.A., and Keen, R.J. 2013. Using sediment tracing to assess processes and spatial patterns of erosion in grazed rangelands, Burdekin River Basin, Australia, Agriculture, Ecosystems and Environment, v. 180, p. 90-102. doi:10.1016/j.agee.2012.02.002.

-Wilson, I.G., 1973. Ergs. Sediment Geology, v. 10, 77-106.

-Zhang, X.C. and Liu, B.L., 2016. Using multiple composite fingerprints to quantify fine sediment source contributions: A new direction, Geoderma, v. 268, p. 108-118. Dx, doi.org/10.1016/j.geoderma.2016.01.03

-Zhou, H., Chang, W. and Zhang, L., 2016. Sediment sources in a small agricultural catchment: A composite fingerprinting approach based on the selection of potential sources, Geomorphology, v. 266, p. 11-19. dx.doi,org/10.1016/j.geomorph.2016.05.007.


ارجاعات
  • در حال حاضر ارجاعی نیست.