palette
مقایسه شبکه‌های عصبی با روش‌های داده‌کاوی به ‌منظور شبیه‌سازی عنصر مس؛ مطالعه موردی: پرکام کرمان
سید سعید قنادپور, اردشیر هزارخانی, ترانه رودپیما

چکیده

تجزیه و تحلیل داده‌ها به ما کمک می‌کند تا بدانیم چگونه می­بایست به نتایج مورد انتظار دست­یابیم، بنابراین برای دستیابی به پردازش‌هایی دقیق­تر، لازم است تا از بین تمام روش­های تحلیل اطلاعات، هر یک که برای موضوع تحت بررسی­مان مناسب­تر است را انتخاب نماییم. بدین منظور جهت آنالیز نمونه‌های حاصله از عملیات نمونه‌برداری سطحی سیستم مس پورفیری پرکام واقع در استان کرمان، تحت چهار مقدار طول و عرض نقاط نمونه­برداری، عیار عناصر مس و مولیبدن، از سه روش پرکاربرد K-نزدیکترین همسایه (KNN)، K میانگین (K-Means) و شبکه‌های عصبی بهره خواهیم گرفت. يكي از ديدگاه­هاي مهم در علم داده­كاوي براي تحليل و بررسي روي حجم زيادي از داده‌ها و نمونه‌ها با مشخصه­هاي گوناگون، ديدگاه خوشه­بندي مي­باشد. از معروف­ترین الگوریتم­های خوشه­بندی، الگوریتم KNN و K-Means می‌باشد که الگوریتم KNN بر اساس تخمین پیش می‌رود و روشی غیر پارامتری جهت کلاسه­بندی و رگرسیون­گیری و به دست آوردن روابط چندین متغیر می‌باشد در حالی که K-Means بر اساس یک معیار فاصله، داده‌ها را به K خوشه تقسیم می‌کند و پس از کلاسه­بندی داده‌ها، رفتار آنها نسبت به یکدیگر را مورد تحلیل قرار می‌دهد. شبکه‌هاي عصبي در تشخيص الگو­ها و نيز زماني که اطلاعات در دسترس براي تفسير کافي نيستند، مي‌توانند ابزاري سودمند باشند. به منظور شبیه­سازی و تخمین عیار مس، الگوریتم­های یاد شده با یکدیگر مورد مقایسه واقع شده و در نهایت نتایج ارائه شده‌اند. در مقاله پیش­ رو، هدف مقایسه نتایج این سه روش به منظور تعمیم آن برای سایر پژوهش‌ها در مواجهه با تعداد داده‌های محدود و هموار ساختن مسیر برای محققین می‌باشد. نتایج حاصله نشان می‌دهد که روش KNN با ضریب همبستگی مناسب­تر نسبت به شبکه‌های عصبی و K-Means برای تخمین عیار عنصر مس، مؤثر واقع شده است. امتیاز استفاده از روش KNN نسبت به دیگر روش­های تخمینی در مقاله پیش­ رو، ارائه­گر الگویی مشخص و دقیق به منظور تخمین عیار در مواجهه با تعداد داده‌های محدود به تصمیم‌گیران این صنعت می‌باشد.

واژگان کلیدی
پرکام، داده کاوی، شبکه های عصبی.

منابع و مآخذ مقاله

منابع

-البرزی، م.، 1389. آشنایی با شبکه‌های عصبی، انتشارات دانشگاه صنعتی شریف، ؟ ص.

-زهرایی، ب. و تکشی، آ.، 1387. كاربرد روش‌هاي الگوريتم ژنتيك و –K نزدیک‌ترین همسايه در تدوين سیاست‌های بهره‌برداري از مخزن در زمان وقوع سيلاب، نشریه تحقیقات منابع آب، نشریه تحقیقات منابع آب ایران،دوره 3، شماره 12، ص 27-37.

-قنادپور، س.س. و هزارخانی، ا.، 1391. بررسی رفتار سرب نسبت به روی و آهن در کانسار مس پورفیری پرکام، شهر بابک، کرمان با استفاده از روش گروه بندی، نشریه علمی- پژوهش‌های دانش زمین، سال سوم، شماره 9، ص64 - 77.

-قنادپور، س.س. و هزارخانی، ا.، 1392. بررسی چگونگی رفتار عنصر مس نسبت به عناصر مولیبدن، سرب و روی در کانسار مس پورفیری پرکام در استان کرمان، با استفاده از روش K-Means، مجله زمین‌شناسی کاربردی پیشرفته، شماره 7، ص 53 - 63.

-قنادپور، س.س. و هزارخانی، ا.، 1392. برآورد مناطق امید بخش جهت تهیه نقشه‌های ناهنجاری ژئوشیمایی مس و مولیبدن در منطقه پرکام، کرمان. نشریه علمی- پژوهش‌های دانش زمین، سال ششم، شماره 21، ص 40 - 50.

-Andrew, F., Weller, A.J., Harris, J. and Andrew, W., 2007. Two Supervised Neural Networks for Classification of Sedimentary Organic Matter Images from Palynological Preparations: Mathematical Geology, v. 39, p. 657-671.

-Audibert, J.Y. and Tsybakov, A.B., 2007. Fast learning rates for plug-in classifiers under the margin condition: Annals of Statistics, v. 35, p. 608-633.

-Bax, E., 2000. Validation of nearest neighbor classifiers: Ieee transactions information theory, v. 58, p. 2746-2752.

-Bhattacharya, G., Ghosh, K. and Chowdhury, A.S., 2012. An affinity-based new local distance function and similarity measure for kNN algorithm: Pattern Recognition Letters, v. 33, p. 356-363.

-Deegalla, S. and Boström, H., 2007. Classification of Microarrays with kNN: Comparison of Dimensionality Reduction Methods: Intelligent Data Engineering and Automated Learning - IDEAL 2007, v. 4881, p. 800-809.

-Funahashi, K.I., 1989. On the approximate realization of continuous mappings by neural networks: Neural Networks, v. 2, p. 193.

-Ghannadpour, S.S. and Hezarkhani, A., 2015. Investigation of Cu, Mo, Pb and Zn Geochemical behavior and geological interpretations for Parkam Porphyry Copper system, Kerman, Iran: Arabian Journal of Geosciences, v. 8, p. 7273-7284.

-He, J., Tan, A. and Tan, C., 2000. Comparative Study on Chinese Text Categorization Methods, On the PRICAI 2000 Workshop on Text and Web Mining, Melbourne, p. 25-31.

-Kamel, N., Ouchen, I. and Baali, K., 2014. A Sampling-PSO-K-means Algorithm for Document Clustering, Genetic and Evolutionary Computing: Springer International Publishing Switzerland, 238 p.

-Kuo, R.J., Suryani, E. and Yasid, A., 2013. Automatic Clustering Combining Differential Evolution Algorithm and k -Means Algorithm: Proceedings of the Institute of Industrial Engineers Asian Conference 2013, Springer Singapore.

-Lacassie, J.P., Roser, B.P., Ruiz-del-Solar, J., Roser, B. and Herv´e, F., 2006. Visualization of Volcanic Rock Geochemical Data and Classification with Artificial Neural Networks: Math Genealogy, v. 38, p. 697-710.

-Meshkani, S.A., Mehrabi, B., Yaghubpur, A. and Alghalandis, Y.F., 2011. The application of geochemical pattern recognition to regional prospecting: A case study of the Sanandaj-Sirjan metallogenic zone, Iran: Journal of Geochemical Exploration, v. 108, p. 183-195.

-Mora, J.L., Armas-Herrera, C.M., Guerra, J.A., Rodríguez, A. and Arbelo, C.D., 2012. Factors affecting vegetation and soil recovery in the Mediterranean woodland of the Canary Islands (Spain): Journal of Arid Environments, v. 87, p. 58-66.

-Ozturk, M.M. and Cavusoglu, U. and Zengin, A., 2015. A novel defect prediction method for web pages using k-means++: journal of Export Systems with Applications, v. 42, p. 6496-6506.

-Poloczek, J., Treiber, N.A. and Kramer, O., 2014. KNN Regression as Geo-Imputation Method for Spatio-Temporal Wind Data: International Joint Conference SOCO’14-CISIS’14-ICEUTE’14, v. 299, p. 185-193.

-Shang, W., Huang, H., Zhu, H., Lin, Y., Qu, Y. and Dong, H., 2006. An Adaptive Fuzzy kNN Text Classifier: Computational Science – ICCS 2006, p. 216-223.

-Singer, D.A., 2006. Typing mineral deposits using their associated rocks and grades and tonnages in a probabilistic neural network: Mathematics Genealogy, v. 38, p. 465-475.

-Tarkian, M. and Stribrny, B., 1999. Platinum-group elements in porphyry copper deposits: a reconnaissance study: Mineralogy and Petrology, Springer-Verlag, v. 65, p. 161-183.

-Varaprasad, M., 2012. Algorithm for Clustering with Intrusion Detection Using Modified and Hashed K – Means Algorithms: Engineering & Applications, Springer-New Delhi, India, v. 167, p. 737-744.

-Weller, A.F., Corcoran, J., Harris, A.J. and Ware, J.A., 2005. The semi-automated classification of sedimentary organic matter in palynological preparations: Computer and Geoscience, v. 31, p. 1213-1223.

-Wu, X. and Zhou, Y., 1993. Reserve estimation using neural network techniques: Computer and Geoscience, v. 19, p. 567-575.

-Xu, H., Lu, Sh. and Zhou, Sh., 2013. A Novel Algorithm for Text Classification Based on KNN and Chaotic Binary Particle Swarm Optimization: Proceedings of the 2012 International Conference on Information Technology and Software Engineering, v. 211, p. 619-627.

-Yang, Y., 1999. An evaluation of statistical approaches to text categorization: Journal of Information Retrieval, v. 1, p. 69-90.

-Yang, Y. and Liu, X., 1999. A re-examination of text categorization methods: In proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’99), p. 42-49.

-Yang, J., Zhuang, Y. and Wu, F., 2012. ESVC- based extraction and segmentation of texture features: Computers and Geosciences, v. 49, p. 238-247.

-Yi, X. and Zhang, Y., 2013, Equally contributory privacy-preserving K-Means clustering over vertically partitioned data: Elsevier, Information Systems, v. 38, p. 97-107.

-Zhang, C., 2013. Study on the Application of Fuzzy KNN to Chinese and English Recognition: Proceedings of the 2012 International Conference of Modern Computer Science and Applications, v. 191, p. 327-332.

-Zu-Feng, W., Xiao-Fan, M., Qiao, L. and Zhi-guang, Q., 2014. Logical Symmetry Based K-means Algorithm with Self-adaptive Distance Metric: Advances in Computer Science and its Applications, Springer-Verlag, Berlin Heidelberg. v. 279, p. 929-936.


ارجاعات
  • در حال حاضر ارجاعی نیست.