تغییرپذیری بارش و دوره های تر و خشک در بخشهای جنوبی دریای خزر

نوع مقاله : علمی -پژوهشی

نویسنده

دانشگاه مازندران

چکیده

بررسی حاضر به تغییرپذیری بارش در بخشهای جنوبی دریای خزر با استفاده از 8 شاخص پرداخته است.داده های روزانه بارش برای 5 ایستگاه سینوپتیک برای دوره زمانی 1956-2014 از سازمان هواشناسی دریافتو مورد بررسی قرار گرفت. میزان NCPI نیز از دادههای جو بالای پایگاه NCEP/NCAR استخراج شد. شاخص-های استخراجشده از بارش شامل طولانیترین دوره خشک سالانه، میانگین تداوم دورههای تر، میانگین بارشدورههای تر، تعداد دورههای تر سالانه، بارش سالانه، طولانیترین دوره تر سالانه، بیشینه بارش سالانه در یکدوره تر و تعداد روزهای بارش است. نتایج نشان داد از میان تغییرات همه شاخصها تغییر میانگین تداومدورههای تر و تعداد روزهای بارش در همه ایستگاهها مشخصتر بوده و دارای روند کاهشی معنیداری هستند.این کاهش در همه ایستگاهها مشاهده شد. در هیچ یک از ایستگاهها طولانیترین دوره خشک سالانه ) CDD )دارای روند خاصی نبوده است. بررسی همبستگی، میان روزهای بارش به صورت ماهانه با شاخص دریای شمال-خزر ) NCPI ( همبستگی زیادی را میان این دو به ویژه در ماههای ژانویه، آوریل، سپتامبر و دسامبر نشان داد.همبستگی نشان داد در فاز منفی NCPI تعداد روزهای خشک افزایش مییابد و تعداد روزهای بارش کاهشنشان میدهد. همچنین طولانیترین دوره تر پیوسته ) CWD ( همبستگی معنیداری با NCPI نشان نداد.مشخصترین شکل تغییرات روند کاهشی به صورت فراگیر از میان تمامی شاخصهای بررسی شده در تعدادروزهای بارش است. روند منفی و معنیدار این شاخص در همه ایستگاهها نشاندهنده تغییر در رفتار زمانیبارش در این منطقه است.

کلیدواژه‌ها


عنوان مقاله [English]

Spatial and temporal variability of precipitation and wet-dry spells in southern areas of Caspian Sea

چکیده [English]

This study surveyed variability in precipitation in the southern part of the Caspian Sea using 8 index. Daily precipitation data for 5 synoptic stations with period 1956-2014 is obtained from Iran Meteorological Organization. Derived Indices from precipitation are the largest number of consecutive dry days, mean duration of consecutive wet days, mean precipitation of wet spells, number of annual wet spells, annual precipitation, largest number of consecutive wet days, maximum precipitation and number of days with precipitation equal to or greater than 1 mm. Using of Mann–Kendall for all indexes showed that mean duration of consecutive wet days and number of days with precipitation equal to or greater than 1 mm have distinctive decreasing trend. Any station has not any trend in CDD index. Investigate of NCPI Tele-connection showed that this index is correlated with monthly precipitation days in southern areas of Caspian Sea. But this index is not correlated with largest number of consecutive wet days. Annual precipitation without significant changes with decrease in number and duration of precipitation days show that annual precipitation is falling on fewer days during a year in this region.

کلیدواژه‌ها [English]

  • Precipitation duration
  • Caspian Sea
  • Variability
  • wet spell
  • NCPI
  1. حجام، سهراب؛ خوشخو، یونس؛ شمس الدین وندی، رضا . (1387). تحلیل روند تغییرات بارندگی های فصلی و سالانه چند ایستگاه منتخب در حوزه مرکزی ایران با استفاده از روش های ناپارامتری. پژوهش های جغرافیایی – شماره 64 , 168-157.
  2. عزیزی و روشنی. (1387). مطالعه تغییر اقلیم در سواحل جنوبی دریای خزر به روش من- کندال. پژوهش های جغرافیایی, 28-13.
  3. فرج زاده اصل، منوچهر؛ فیضی، وحید. (1389). آشکارسازی تغییرهای زمانی-مکانی عناصر دما و بارش در ایران. مجله مدرس علوم انسانی، دوره شانزدهم شماره 4 , 66-49.
  4. قویدل رحیمی. یوسف، فرج زاده. منوچهر و کاکاپور. سعید . (1393). بررسی اثر الگوی پیوند از دور دریای شمال- خزر بر نوسانات بارشهای پاییزی مناطق غرب و شمال غرب ایران. جغرافیا و برنامه ریزی شماره 39 , 218-230.
  5. محمدی، حسین؛ تقوی، فرحناز. (1384). روند شاخص های حدی دما و بارش در تهران، . پژوهش های جغرافیایی, 172-151.
  6. معصوم پور سماکوش، جعفر؛ رجایی، سعید؛ یگانه فر، مریم. (1393). تغییرپذیری زمانی- مکانی و روند تبخیروتعرق گیاه مرجع در ایران. نشریه تحقیقات کاربردی علوم جغرافیایی سال چهاردهم، شماره 34 , 7-25.
  7. Alpert. P, Ben-gai. T, Baharad.A, Benjamini. Y, Yekutieli.D, M. Colacino and L. Diodato, C. Ramis, V. Homar, and R. Romero, S. Michaelides, A. Manes. (2002). The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophysical Research Letters .
  8. Brunetti. M, Kutiel. H. (2011). The relevance of the North-Sea Caspian Pattern (NCP) in explaining temperature variability in Europe and the Mediterranean. Natural Hazards and Earth System Sciences , 2881–2888.
  9. Dessler And Parson. (2006). The Science and Politics of Global Climate Change: A Guide to the Debate. New York: Cambridge University Press.
  10. Easterling,D.R, Evans, J.L.Groisman, P. Ya. Karl, T.R. Kunkel, K.E. Ambenje, P. (2000). Observed Variability And Trends In Extreme Climate Events: A Brief Review. Bulletin Of The American Meteorological Society.
  11. Fauchereau, N., Trzaska, S., Rouault, M., Richard, Y. (2003). Rainfall variability and changes in Southern Africa during the 20th century in the global warming context. Nat. Hazards 29 , 139–154.
  12. Folland CK and Karl TR. (2001). Observed climate variability and change. Cambridge: Intergovernmental Panel on Climate Change.Working Group I. Cambridge: Cambridge University Press.
  13. Ghanghermeh, A., Roshan, G.R. and Al-Yahyai, S. (2015). The influence of Atlantic-Eurasian teleconnection patterns on temperature regimes in South Caspian Sea coastal areas: a study of Golestan Province, North Iran. Pollution,1(1) , 67-83.
  14. Goodess, C. M, Jones, P. D. (2002). Links Between Circulation And Changes In The. International Journal Of Climatology , 1593–1615.
  15. Groisman, P.Ya., Knight, R.W., Easterling,D.R., Karl, T.R.,Hegerl,G.C. (2005). Trends In Intense Precipitation In The Climate Record. Journal Of Climate , 1326–1350.
  16. Hardy, J. T. (2003). Climate Change Causes, Effects and Solutions. Chichester: John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West SussexPO19 8SQ, England.
  17. Houghton. (2002). Introduction To Climate Change:Lecture Notes For Meteorologists. Geneva – Switzerland: WMO-No. 926.
  18. IPCC. (2001). Climate Change: Impacts, Adaptation & Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), McCarthy, J. J., O. F. Canziani, N. A. Leary, D. J. Dokken, and K. S. White (eds), Cambridge University .
  19. Jaggard, L. (2007). Climate Change Politics in Europe Germany and the International Relations of the Environment.London: Tauris Academic Studies.
  20. Jiang ,Feng-qing , Hu, Ru-Ji,Wang,Shao-Ping,Yan-Wei Zhang & Li Tong. (2013). Trends of precipitation extremes during 1960–2008in Xinjiang, the Northwest China. Theor Appl Climatol , 133–148.
  21. Jiang, Feng-qing , Ru-Ji Hu, Shao-Ping Wang,Yan-Wei Zhang, Li Tong. (2013). Trends of precipitation extremes during 1960–2008in Xinjiang, the Northwest China. Theoretical and Applied Climatology , 133–148.
  22. Kutiel, H. and Turkes¸, M. (2005). New Evidence for the role of the North Sea Caspian Pattern on the temperature and precipitation regimes in continental central Turkey. Geografiska Annaler , 501–513.
  23. Kutiel. M, Benaroch. Y. (2002). North Sea-Caspian Pattern (NCP)- an upper level atmospheric teleconnection affecting the eastern Meditarranean: Identification and defination. Theoretical and Applied Climatology , 17-28.
  24. Luterbacher, J., et.al. (2006). Mediterranean Climate Variability Over the Last Centuries: A Review. The Mediterranean Climate: an overview of the main characteristics and issues, Lionello P., Malanotte-Rizzoli P., Boscolo R., Elsevier, .
  25. Maichandee S., Kreasuwun J., Komonjinda S. and Promnopas W. (2014). Effects of climate change on future extreme rainfall indices over Thailand. Global NEST Journal , 307-316.
  26. Nastos & Zerefos. (2009). Spatial and temporal variability of consecutive dry and wet days in Greece. Atmospheric Research , 1-12.
  27. Nastos, P. T. Zerefos, C. S. (2010). Cyclic modes of the intra-annual variability of precipitation in Greece. Advances in Geosciences , 45–50.