مدل رسوبی، دیاژنز و ژئوشیمی سازند سفید‌کوه (اسکیتین پسین) واقع در پنجره تکتونیکی آق‌دربند، شمال شرق ایران

نوع مقاله : علمی -پژوهشی

نویسندگان

1 کارشناسی‌ارشد رسوب‌شناسی و سنگ‌شناسی رسوبی، دانشکده علوم زمین، دانشگاه شهید بهشتی

2 استاد، دانشکده علوم‌ زمین، دانشگاه شهید بهشتی

10.29252/esrj.9.2.75

چکیده

رسوب­گذاری کربنات­های کم­عمق در خلال تریاس پیشین در شمال شرق ایران (سازند سفید­کوه: در پنجره آق­دربند) شاخص است. این سازند به سن اسکیتین پسین در برش نمونه با ناپیوستگی بر روی سازند قره­قیطان واقع شده و به طور ناپیوسته نیز در راس با سازند نظر­کرده پوشیده می­شود. این سازند به منظور ارزیابی مدل رسوبی، کانی­شناسی اولیه کربناته و فرآیند­های دیاژنزی در برش­های کال فقیر (215 متر)، کال انگور (75 متر)، کال غالک (70 متر) و کال عنابه (30 متر) با استفاده از مطالعات پتروگرافی و آنالیز­های ژئوشیمیایی مورد بررسی قرار گرفت. مطالعات پتروگرافی منجر به تشخیص 12 ریز­رخساره که در چهار کمربند رخساره­ای: جزرومدی، لاگون و سد واقع در رمپ داخلی و ریز­رخساره­های دریای باز مربوط به رمپ میانی و خارجی، شد. فراوانی رسوبات جزرومدی همراه با رخساره ااییدی سدی و نبود سد بزرگ ریفی و رسوبات توربیداتی (calciturbidite) حاکی از رسوب­گذاری این سازند در یک سیستم رمپ هم­شیب کربناته می­باشد. فراوانی اجزاء اسکلتی و غیر اسکلتی از جنس آراگونیت همراه با سیمان آراگونیتی، اایید قالبی (oomold) و حضور دولومیت همراه با مقدار بالای عنصر استرانسیوم (Sr) اشاره به کانی­شناسی اولیه آراگونیت در کربنات­های سازند سفید­کوه در زمان تشکیل دارد. فرآیند­های دیاژنزی در این سازند شامل: سیمانی شدن، دولومیتی شدن، ددولومیتی شدن، میکریتی شدن، آشفتگی زیستی، هماتیتی شدن، فشردگی، انحلال، پر­شدگی رگه، فسفاتی شدن، پیریتی شدن و استیلولیتی شدن می­باشند. مهم­ترین فرآیند دیاژنزی در این سازند سیمانی شدن و دولومیتی شدن بوده که نهشته­های سازند سفید­کوه را تحت­تاثیر قرار داده­اند. مقادیر عناصر اصلی (Ca و Mg) و عناصر فرعی (Sr,Na Fe و Mn) (همچون مقادیر بالای Sr) نشان از رسوب­گذاری سازند سفید­کوه در محیط نیمه­حاره­ای کم­عمق بوده و آراگونیت مینرالوژی اولیه بوده است. تغییرات Sr/Ca حاکی از رخداد دگرسانی دیاژنز در سیستم بسته تا کاملا باز، با واکنش بالای آب/سنگ است که دولومیتی شدن، انحلال و سیمانی شدن در مطالعات پتروگرافی موید آن است. 

کلیدواژه‌ها


عنوان مقاله [English]

Depositional model, diagenesis and geochemistry of the Sefid- Kuh Formation (Late Scythian) in Aghe darband Tectonic Window, NE. of Iran

چکیده [English]

Shallow marine carbonate sedimentation prevailed during the Early Triassic in the north-east of Iran (Sefid Kuh Formation; Agh Darband tectonic window). This formation with the age of Late Schythian overlies conformably the Qara Gheithan Formation and is unconformably covered by the Nazarkardeh Formation in the type section. To evaluate the depositional model, original carbonate mineralogy and diagenetic processes in Kale Faqir (250m), Kale Angur (90m), Kale Ghalk (70m) and Kale Anabeh (30m), the Sefid Kuh Formation was investigated by petrographic and geochemical analyses. Based on sequence stratigraphy in this formation, four 3rd sequence in Kale Faqir detected. Three sequence in Kale Angur, two sequence in Kale Ghalk and one sequence in Kale Anabeh detected. Petrographic studies led to the recognition of 12 microfacies that were deposited in four facies belts: tidal flat, lagoon, and shoal in inner ramp and shallow open marine in mid to outer ramp environment. Of these microfacies, eight belong to inner ramp, one belong to mid ramp and three are located in the outer ramp setting. The wide distribution of tidal flat sediments along with the oolitic shoal facies and lack of a large shoal reef and calciturbidite indicate a homoclinal-ramp system. Mud mounds are one of the most sedimentary structure in the shallow-marine carbonates of the Sefid Kuh Formation and contained biotubation, worm tube and ostacod debries. Abundant aragonite skeletal and non-skeletal components, aragonite cements, oomold and presence of dolomites in Sefid-Kuh carbonates indicate original aragonite mineralogy. Cementation, dolomitization, dedolomitization, micritization, bioturbation, hematitization, compaction, dissolution, vein filling, phosphatitization, pyritization and stylolitization are diagenetic processes in the Sefid Kuh Formation, occurring in marine to meteoric and burial diagenetic environments. Cementation and dolomitization are the main diagenetic processes that affected the original texture. Values of major (Ca and Mg) and minor (Sr, Na, Fe and Mn) elements (such as high Sr value) shoes that the Sefid Kuh carbonates were deposited in a shallow warm-water subtropical environment and aragonite was the original carbonate mineralogy. Variations of Sr/Ca suggest that diagenetic alteration must have occurred in an open diagenetic system, with high water/rock interaction which dolomitization, dissolution and cementation support this conclusion.

کلیدواژه‌ها [English]

  • Sefid Kuh Formation
  • Depositional model
  • Diagenesis
  • Geochemistry
  • Agh Darband
  1. -آدابی، م.ح.، 1390. ژئوشیمی رسوبی، انتشارات آرین زمین، چاپ دوم، 503 ص.
  2. -آقانباتی، ع.، 1388. فرهنگ چینه‌شناسی ایران: انتشارات سازمان زمین‌شناسی و اکتشاف معدنی کشور، ص. 549-592.
  3. -آقانباتی، ع.، 1390. واحد‌های تکتونواستراتیگرافی ایران: سازمان زمین‌شناسی و اکتشاف‌معدنی کشور، 7 ص.
  4. -لیاقت، م.، 1391."محیط رسوبی، دیاژنز، ژئوشیمی و چینه‌نگاری سکانسی سازند‌های سفید-کوه و نظر‌کرده در پنجره تکتونیکی آق‌دربند، شرق حوضه کپه داغ"، پایان‌نامه کارشناسی‌ارشد، دانشگاه شهید بهشتی تهران، 341 ص.
  5. -Adabi, M.H., Kakemem, U. and Sadeghi, A., 2015. Sedimentary facies, depositional environment, and sequence stratigraphy of Oligocene–Miocene shallow water carbonate from the Rig Mountain, Zagros basin (SW Iran): Carbonates and Evaporites, v. 23 (2), p. 1-17.
  6. -Adabi, M.H., 2009. Multistage dolomitization of Upper Jurassic Mozdouran Formation, Kopet-Dagh, and N.E. Iran: Carbonates and evaporates, v. 24(1), p.16-32.
  7. -Adabi, M.H. and Rao, C.P., 1991. Petrographic and geochemical evidence for original aragonite mineralogy of Upper Jurassic carbonates (Mozduran Formation), Sarakhs area, Iran: Sedimentary Geology, v. 72, p. 253-167.
  8. -Adabi, M.H., Salehi, M.A. and Ghobeishavi, A., 2010. Depositional environment, sequence stratigraphy and geochemistry of Lower Cretaceous carbonates (Fahliyan Foemation), South-west Iran, Journal of Asian Earth Sciences, v. 39, p. 148-160.
  9. -Adabi, M.H. and Mehmandosti, E.A., 2008. Microfacies and geochemistry of the Ilam Formation in the Tang-E Rashid area, Izeh, SW Iran. J. Asian Earth Sciences, v. 33, p. 267-277.
  10. -Afshar-Harb, A., 1979. The stratigraphy, tectonics and petroleum geology of the Kopet-Dagh region Northern Iran, A Thesis submitted for the degree of Doctor of Philosophy in petroleum geology, University of London, 316 p.
  11. -Afshar-Harb, A., 1980. Predicion of oil and gas zones in the Kopet Dagh region – northeast Iran, National Iranian Oil Company.
  12. -Alavi, M., Vaziri, H., Seyed-Emami, K. and Lasemi, Y., 1997. The Triassic and associated rocks of the Nakhlak and Aghdarband areas in central and northeastern Iran as remnants of the southern Turanian active continental margin, Geological Society of America, Bulletin, v. 109, p. 1563-1575.
  13. -Asadi, E. and Adabi, M.H., 2013. Application of geochemical data as evidence of water-rock interaction in the Sarvak Formation, Izeh Zone, Zagros, Iran: Procedia Earth and Planetary Science, v. 7, p. 31-37.
  14. -Balini, M., Nicora, A., Berra, F., Garzanti, E., Levera, M., Mattei, M. and Mossavvari, F., 2009. The Triassic stratigraphic succession of Nakhlak (Central Iran), a record from an active margin: Geological Society, London, Special Publications, v. 312(1), p. 287-321.
  15. -Bathurst, R.G.C., 1975. Carbonate Sediments and their Diagenesis, Developments in Sedimentology, v. 12, Elsevier, Amsterdam, 658 p.
  16. -Baud, A. and Brander, R., 1991. "The Sefid Kuh limeston- A late Lower Triassic carbonate ramp (Aghdarband, NE Iran)", Abhandlungen der Geologischen Bundesanstalt, v. 38: p. 111-123.
  17. -Baud, A., Stampfli, G. and Steen, D., 1991. The Triassic Aghdarband group: Volcanism and geological evolution, Abhandlungen der geologischen Bundesantalt, v. 38, p. 125-137.
  18. -Bjørlykke, K., 2015. Petroleum Geoscience: from Sedimentary Environments to Rock Physics (2nd edition): Springer-verlag Berlin Heidelberg, 508 p.
  19. -Boggs, S.J., 2015. Principles of Sedimentology and Stratigraphy (6th edition): University of Oregon., 660 p.
  20. -Braithwaite, C.J., Rizzi, G. and Darke, G., 2004. The geometry and petrogenesis of dolomite hydrocarbon reservoirs: introduction. Geological Society, London, Special Publications, v. 235(1), p. 1-6.
  21. -Brand, U. and Veizer, J., 1980. Chemical diagenesis of multicomponent carbonate system, II: stable isotopes, Journal of Sedimentary Petrology, v. 51, p. 987-997.
  22. -Dickson, J.A.D., 1966. Carbonate identification and genesis as revealed by staining: Journal of Sedimentary Petrology, v. 36. p. 491-505.
  23. -Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture: American Association of Petroleum Geology, v. 1, p. 108-121.
  24. -Flügel, E. and Munnecke, A., 2010. Microfacies of Carbonate Rocks, Analysis, Interpretation and Application: Springer, Berlin, 1006 p.
  25. -Henrix, M.S. and Geregory, A.D., 2001. Paleozoic and Mezozoic Tectonic Evolution of Centeral and Eastern Asisa, The Geological Society of America. Memoir 194, 441 p.
  26. -Krystyn, L. and Tatzreite, R.F., 1991. Middle Triassic ammonoids from Aghdarband (NE-Iran) and their paleobiogeographical significance. Abhandlungen der Geolologischen Bundesanstalt, v. 38, p. 139-163.
  27. -Monty, C.L.V., Bosence, D.W.J. and Pratt, B.R., 1995. Carbonate Mud-Mounds_ their origin and evolution: International Association of Sedimentologists, 537 p.
  28. -Moore, C.H. and Wade, W.J., 2013. Carbonate Reservoirs, Porosity and Diagenesis in a Sequence Stratigraphic Framework (2nd edition): Developments in Sedimentology, No. 67: Elsevier New York, 347 p.
  29. -Morad, S., Ketzer, J.M. and De Ros, L.F., 2013. Linking Diagenesis to Sequence Stratigraphy: An Integrated Tool for Understanding and Predicting Reservoir Quality Distribution: SEPM, Wiely Blackwell, 522 p.
  30. -Rao, C.P., 1991. Geochemical differences between subtropical (Ordovician), temprate (Recent and Pleistocene) and subpolar (Permian) carbonates, Tasmania, Australia: Carbonates and Evaporites, v. 10, p. 114-123.
  31. -Rao, C.P. and Adabi, M.H., 1992. Carbonate minerals, major and minor elements and oxygen and carbon isotopes and their variation with water depth in cool, temperate carbonates, western Tasmania, Australia, Marine Geology, v. 103, p. 249-272.
  32. -Rao, C.P. and Amini, Z.Z., 1995. Faunal relationship to grain-size, mineralogy and geochemistry in recent temperate shelf carbonates, western Tasmania, Australia: Carbonates and Evaporites, v. 10, p. 114-123.
  33. -Ruttner, A.W., 1984. The pre-Liassic basement of the eastern Kopet Dagh rang: Neuse Jahrbuch fur geologie und palantologie", Abhandlungen, v.168, p. 256-268.
  34. -Ruttner, A.W., 1991a. "Geology of the Aghdarband area (Kopet Dagh NE Iran)", Abhandlungen Der Geologischen Bundesanstalt, v. 38, p. 7-79.
  35. -Ruttner, A.W., 1991b. "The Triassic or Aghdarband (Aq Darband) and its Pre-Triassic Frame, ICPG Project. No. 73/1/14. 252 p.
  36. -Ruttner, A.W., 1993. "Southern borderland of Triassic Laurasia in northeast Iran", Geologisches Rundschau, v. 82, p. 110-120.
  37. -Scholle, P. and Spearing, D., 1998. Sandstone Depositional Environments. Tulsa, Oklahoma 74101, U.S.A. American Association of Petroleum Geology. #31, 404 p.
  38. -Seyed-Emami, K., 2003. Triaasic in Iran: Journal of Facies, v. 48, p. 91-106.
  39. -Westphal, H., Rigel, B. and Eberli, P., 2010. Carbonate depositional systems: Assessing dimensions and controlling parameters: The Bahamas, Belize and the Persian/Arabian Gulf: Springer science+business media, 235 p.
  40. -Wilson, J.L., 2013. (2nd ed.), Carbonate Facies in Geologic History: Springer Berlin, 471 p.
  41. -Winefield, P.R., Nelson, C.S. and Hodder, W.A.P., 1996. Discriminating temperate carbonates and their diagenesis environments using bulk elemental geochemistry a raconnaissance study based on New Zealand Cenozoic limestones, Carbonates and Evaporites, v. 11, p. 19-31.
  42. -Zanchi, A., Zanchetta, S., Garzanti, E., Balini, M., Berra, F., Mattei, M. and Muttoni, G., 2009. The Cimmerian evolution of the Nakhlak–Anarak area, Central Iran, and its bearing for the reconstruction of the history of the Eurasian margin: Geological Society, London, Special Publications, v. 312(1), p. 261-286.
  43. -Zarza, A.M. and Tanner, L.H., 2010. Carbonates in Continental Settings Geochemistry, Diagenesis an Applications: Elsevier, 319 p.