زمین‌شناسی و ژئوشیمی ایزوتوپی کانسار Cu-Mo پورفیری هفت‌چشمه با تکیه بر نتایج ایزوتوپ‌های Sr–Nd–Pb-S-O-H

نوع مقاله : علمی -پژوهشی

نویسندگان

1 گروه زمین‌شناسی معدنی و آب، دانشکده علوم ‌زمین، دانشگاه شهید بهشتی، تهران، ایران

2 گروه زمین‌شناسی، دانشگاه پیام نور، ایران

چکیده

کانه‌زایی Cu-Mo پورفیری در کانسار هفت‌چشمه واقع در شمال‌غربی زون فلززایی- ماگمایی ارسباران، شمال-غرب ایران مرتبط با نفوذ توده نفوذی گرانودیوریتی به ‌درون توده پورفیری گابرودیوریتی می‌باشد. براساس مطالعات کانی‌شناسی، روابط بافتی و متقاطع رگه‌های کوارتز سولفیددار، فرایندهای دگرسانی و کانه‌زایی هیپوژن Cu-Mo در این کانسار به سه مرحله کانه‌زاییI  وII  همراه با دگرسانی پتاسیک و مرحله کانه‌زایی III همراه با زون دگرسانی سریسیتی تقسیم‌بندی شده‌اند. مقادیر محاسبه‌شده سیال-δ18O و سیال-δD کانی‌های بیوتیت در تعادل با سیال گرمابی به‌ترتیب 3/8+ تا 6+ پرمیل و 76- تا 74- پرمیل نشان‌گر منشاء ماگمایی سیالات سازنده هاله‌های دگرسانی پتاسیک احاطه‌کننده مرحله II کانه‌زایی می‌باشد. مقادیر محاسبه‌شده سیال-δ18O و سیال-δD کانی‌های سریسیت در تعادل با سیال گرمابی به ‌ترتیب 9/7+ تا 6/5+ پرمیل و 100- پرمیل تا 84- پرمیل نشان-گر مشارکت بسیار کم آب‌های سطحی با سیالات ماگمایی در تشکیل هاله‌های دگرسانی سریسیتی می‌باشد. محدوده تغییرات مقادیر δ34S ایزوتوپ‌های گوگرد کانه‌های پیریت و کالکوپیریت در مراحل کانه‌زایی II و III کانسار هفت‌چشمه به‌ترتیب بین 4/5- تا 2/3- پرمیل و 1/3+ تا 7/0+ پرمیل نشان‌دهنده منشاء ماگمایی گوگرد در کانه‌های سولفیدی و تغییرات فیزیکوشیمیایی سیالات کانه‌زا در این مراحل کانه‌زایی می‌باشد. مقادیر همگن و محدوده باریک تغییرات نسبت‌های ایزوتوپی سنگ‌کل 143Nd/144Nd، 87Sr/86Sr، εNd و 206Pb/204Pb، 204Pb/204Pb و 208Pb/204Pb توده‌های پورفیری گابرودیوریت و گرانودیوریت به‌ترتیب 512773/0- 512776/0، 7044/0-7046/0، 6/2+ 7/2+، 82/18-93/18، 60/15-61-15 و 90/38-39 نشانگر تشکیل این توده‌ها در اثر ذوب بخشی پوسته زیرین ضخیم‌شده منشاء گرفته از گوشته تهی‌شده، در رژیم تکتونیکی فشارشی و سپس آغشتگی با مواد پوسته بالایی در طی صعود و تبلور ماگما می‌باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Geologiy and isotopic geochemistry of the Haftcheshmeh Cu-Mo porphyry deposit, implication of the Sr-Nd-Pb-S-O-H isotopes

نویسندگان [English]

  • nazanin zaheri abdehvand 1
  • iraj Rasa 1
  • shohreh Hassanpour 2
1 Department of Minerals and Groundwater Resources, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
2 Department of Geology, Payame Noor University, Iran
چکیده [English]

Introduction The Haftcheshmeh porphyry Cu–Mo deposit is located in the NW part of the Arasbaran Metallogenic-magmatic zone (AMZ), NW Iran. The (AMZ), located in the southernmost of Lesser Caucasus subduction zone, extends from NW Iran to Armenia and Azerbaijan (Hassanpour et al., 2015). The Haftcheshmeh Cu–Mo porphyry deposit was developed synchronously with the emplacement of the Oligo-Miocene Haftcheshmeh porphyries, ranging in composition from gabbro-diorite to granodiorite. Based on the detailed field and petrography studies, four alteration zones from center to outward have been recognized in the Haftcheshmeh deposit, including early potassic and peripheral propylitic alterations, successively followed by sericitic and locally argillic alteration zones. According to the mineralogical, textural, and crosscutting relation of the quartz veins, three hypogene hydrothermal alteration-mineralization have been recognized. Stages I and II are associated with potassic alteration zone; and stage III is associated with sericite alteration zone. The purpose of this paper is to determine the characteristics and origin of the ore-bearing fluids, with particular focus on the results of S-O-H stable isotopes of the hydrothermal sulfide ores, phyllosilicate minerals (biotite and sericite) given from potassic and sericite alteration zones. The whole rock Sr-Nd-Pb radiogenic isotopes were undertaken to elucidate the possible origin of the parental magma of the ore-bearing Haftcheshmeh porphyries. Materials and methodsMore than 100 polished and thin sections from mineralized gabbro-diorite and granodiorite porphyries bore hole samples were studied by petrographic and mineralogical methods at the Shahid Beheshti University, Tehran. Two biotites from stage II; and five sericites from stage III and ten sulfide minerals (eight pyrite and two chalcopyrite) were separated from quartz–sulfide veinlets of II and III mineralization stages. They were used for δ18O, δD and δ34S stable isotope analysis; which was performed at the geochemistry and isotopic research Laboratory of British Colombia, Canada, using a Finnigan MAT 252 mass spectrometer. Whole-rock Sr-Nd-Pb isotopic compositions of the two least altered gabbro-diorite and granodiorite porphyries were performed at the geochemistry and isotopic research Laboratory of British Colombia, Canada, using Nu Multi-Collector Thermal Ionization Mass Spectrometer; (TIMS).Results and discussionThe calculated aqueous fluids δ18OH2O and δDH2O values of water in equilibrium with biotite samples range from +8.3‰ to +6 and from –76 to –74‰ respectively. The calculated δ18OH2O and δDH2O values of water in equilibrium with sericite samples range from 5.6 to 8.3 ‰ in δ18OH2O and from –100 to –84‰ in δDH2O, respectively. The δ34S values of pyrite and chalcopyrite from stage II range from -5.4 to -3.7 (n=4), and -3.2‰ (n=1) respectively, and δ34S values of pyrite and chalcopyrite from stage III range from +0.9 to +3.1 (n=3) and +0.7 (n=1), respectively. Gabbro-diorite and granodiorite samples at Haftcheshmeh have an initial 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb ratios, and εNd (t) values between 0.7044-0.7046; 0.5128-0.51277; 18.8-18.93; 15.60-15.61; 38.8-39 and +2.7 to +2.6, respectively.The δ18OH2O and δDH2O1 values of the biotite samples from stage II with potassic alteration halo and sericite samples from stage III, indicate that the initial ore-forming fluids were from a magmatic dominated origin and then mixed with a low component of the meteoric water. The δ34S values of pyrite and chalcopyrite minerals reflected a homogeneous magmatic and mantle-dominated sulfur source. The Pb isotopic compositions of the Haftcheshmeh porphyries show a relatively uniform magmatic origin during the compressional regime. Whole-rock initial 87Sr/86Sr, 143Nd/144Nd isotopic ratios and positive ɛNd(t) values indicated that the adakite-like Haftcheshmeh porphyries were generated from a dominantly depleted mantle-derived, thickened lower crust source, which was consequently contaminated by upper crustal materials during the ascent and crystallization of magma.ConclusionsThree alteration and Cu-Mo mineralization stages associated with potassic and sericite alteration zones of the gabbro-diorite to granodiorite phases have been recognized in the Haftcheshmeh porphyry deposit. The measured and calculated δ18O and δD values of the potassic to sericite minerals from stage II to III reflected that the magmatic hydrothermal fluids were progressively mixed with a meteoric water influx. The δ34S and the calculated δ34SH2S values of pyrite and chalcopyrite sulfides from stage II and III reflected that the magmatic sulfur and physico-chemicals contributed to sulfide mineral formation. The homogenous whole rocks 143Nd/144Nd, 87Sr/86Sr and initial Pb isotopes ratios of the gabbro-diorite to granodioritic porphyries indicated that the primary magmas were generated from a dominantly depleted mantle-derived, thickened, lower crust source. It was consequently contaminated by upper crustal materials either at the magma source or during the ascent and crystallization of magma during the compressional regime.

کلیدواژه‌ها [English]

  • O-D-S stable isotopes
  • Whole rock Sr-Nd-Pb radioisotopes
  • Arasbaran magmatic zone
  • Porphyry Cu-Mo deposit
  1. -افشونی، ز.، اسماعیلی، د. و اسدی هارونی، ه.، 1392. مطالعه ایزوتوپ‌های پایدارS ،H ،O در زون‌های دگرسانی فیلیک و پتاسیک- فیلیک کانسار مس-مولیبدن پورفیری کهنگ (شمال‌شرق اصفهان)، زمین‌شناسی کاربردی پیشرفته، شماره‌ 7، ص 64 تا 73.
  2. -باباخانی، ع.ر.، لسکویه، ج.ل. و ریو، ر.، 1369. شرح نقشه زمین‌شناسی چهارگوش اهر، مقیاس 1:250000 سازمان زمین‌شناسی کشور.
  3. -تقی‌پور، ن. و درانی، م.، 1392. زمین‌شیمی ایزوتوپ‌های پایدار گوگرد و اکسیژن کانی‌های سولفیدی و سولفاتی کانسار مس پورفیری پرکام شهربابک، استان کرمان، مجله زمین‌شناسی کاربردی پیشرفته، شماره‌ 8، ص 61 تا 71.
  4. -حسن‌پور، ش.، 1389. متالوژنی و کانه‌زایی کانسارهای مس-طلا در زون ماگمایی ارسباران، آذربایجان شرقی، شمال‌غرب ایران، رساله دکتری زمین‌شناسی اقتصادی، دانشکده علوم‌زمین، دانشگاه شهید بهشتی.
  5. -شرکت ملی صنایع مس ایران، 1388. گزارش و نقشه زمین‌شناسی منتشر نشده ناحیه هفت‌چشمه؛ مقیاس 1:1000.
  6. -عادلی، ز.، 1392. کانی‌شناسی، ژئوشیمی، زایش و مدل‌سازی کانسار هفت‌چشمه، شرق آذربایجان، ایران، رساله دکتری زمین‌شناسی اقتصادی، دانشگاه آزاد اسلامی تهران، شعبه علوم و تحقیقات.
  7. -ظاهری‌عبده‌وند، ن.، 1399. تحولات ماگمایی و تشکیل سیالات کانه‌دار کانسار Cu-Mo پورفیری هفت‌چشمه: با شواهدی از شیمی کانی‌های بیوتیت و آمفیبول، ایزوتوپ‌های پایدار و ناپایدار، رساله دکتری زمین‌شناسی اقتصادی، دانشکده علوم‌زمین، دانشگاه شهید بهشتی.
  8. -محمددوست، ه.، قادری، م. و حسن‌زاده، ج.، 1397. تغییرات ایزوتوپی گوگرد کانی‌های سولفیدی در سامانه‌های پورفیری خوشه میدوک، کمان ماگمایی سنوزوییک کرمان، جنوب خاور ایران، فصلنامه علوم-زمین، بهار 97 ، سال 27 م، شماره‌ 107، ص 3-13.
  9. -معانی جو، م.، مستقیمی، م.، عبدالهی ریسه، م. و سپاهی گرو، ع.ا.، 1391. مطالعات سیستماتیک ایزوتوپ‌های پایدار گوگرد و میانبارهای سیال گروه-های رگچه‌های مختلف کانسار مس پورفیری سرچشمه، براساس داده‌های جدید، مجله زمین-شناسی اقتصادی، شماره‌ 2، جلد 4، ص 217-239.
  10.  
  11.  
  12. -Aguillon–Robles, A., Calmus, T., Benoit, M., Bellon, H., Maury, R.C., Cotten, J., Bourgois, J. and Michaud, F., 2001. Late Miocene adakites and Nb–enriched basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise subduction below southern Baja California?: Geology, v. 29, p. 531-534.
  13. -Allegre, C.J., 2008. Isotope Geology, first ed: Cambridge University Press, New York.
  14. -Bissig, T., Clark, A.H., Lee, J.K.W. and Quadt, A.V., 2003. Petrogenetic and metallogenetic responses to Miocene slab flattening: new constraints from the El Indio-Pascua Au– Ag–Cu belt: Mineralum Deposita, v. 38, p. 844-862.
  15. -Calagari, A.A., 2003. Stable isotope (S, O, H and C) studies of the phyllic and potassic–phyllic alteration zones of the porphyry copper deposit at Sungun, East Azarbaidjan, Iran; Journal of Asian Earth Scinces, v. 21-7, p. 767-780.
  16. -Chiaradia, M., Ulianov, A., Kouzmanov, K. and Beate, B., 2012. Why large porphyry Cu deposits like high Sr/Y magmas?. Scientific Reports, v. 2, 685 p.
  17. -Craig, H., 1961. Isotopic variations in meteoric waters: Science, v. 133, p. 1702-1703.
  18. -De Paolo, D.J. and Wasserburg, G.J., 1976. Nd isotopic variations and petrogenetic models: Geophysical Research Letters, v. 3, p. 249-252.
  19. -Doe, B.R. and Zartman, R.E., 1979. Plumbotectonics I, the Phanerozoic: In: Barnes, H.L, Geochemistry of Hydrothermal Ore Deposits. Wiley, New York, p. 22-70.
  20. -Dosso, L., Bougault, H. and Joron, J.L., 1993. Geochemical morphology of the North Mid Atlantic Ridge, 108–248N: Trace element isotope complementarity: Earth and Planetary Science Letters, v. 120, p. 443-462.
  21. -Giggenbach, W.F., 1992. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin: Earth and Planetary Science Letters, v. 113, p. 495-510.
  22. -Gustafson, L.B. and Hunt, J.P., 1975. The porphyry copper deposit at El Salvador, Chile: Economic Geology, v. 70, p. 857-912.
  23. -Haschke, M., Ahmadian, J., Murata, M. and McDonald, I., 2010. Copper mineralization prevented by arc–root delamination during Alpine– Himalayan collision in Central Iran: Economic Geology, v. 105, p. 855-865.
  24. -Hassanpour, S., 2017. The Sungun porphyry magma resource and the 120,000-year difference in age between the main stock and the first dike: New evidence from 87Sr/86Sr, 143Nd/144Nd and Pb, SHRIMP U–Pb zircon dating in NW Iran: Iranian Journal of Earth Sciences, v. 9, p. 94-104.
  25. -Hassanpour, S. and Moazzen, M., 2017. Geochronological Constraints on the Haftcheshmeh Porphyry Cu-Mo-Au Ore Deposit, Central Qaradagh Batholith, Arasbaran Metallogenic Belt, Northwest Iran: Acta Geologica Sinica, v. 91(6), p. 2109-2125.
  26. -Hassanpour, S., Alirezaei, S., Selby, D. and Sergeev, S., 2015. SHRIMP zircon U–Pb and biotite and hornblende Ar–Ar geochronology of Sungun, Haftcheshmeh, Kighal, and Niaz porphyry Cu–Mo systems, evidence for an early Miocene porphyry-style mineralization in northwest Iran: International Journal of Earth Sciences, v. 104, p. 45-59.
  27. -Harris, A., Golding, S. and White, N., 2005. Bajo de la Alumbrera Copper-Gold Deposit: Stable Isotope Evidence for a Porphyry-Related Hydrothermal System Dominated by Magmatic Aqueous Fluids: Economic Geology, v. 100, p. 863-886.
  28. -Hart, S.R., 1984. The DUPAL anomaly: a large-scale isotopic anomaly in the southern hemisphere: Nature, v. 306, p. 753-756.
  29. -Hawkesworth, C.J. and Kemp, A.I.S., 2006. Evolution of the continental crust: Nature, v. 443, p. 811-817.
  30. -Hedenquist, J.W. and Lowenstern, J.B., 1994. The role of magmas in the formation of hydrothermal ore deposits: Nature, v. 370, p. 519-527.
  31. -Hou, Z.Q., Zhang, H., Pan, X. and Yang, Z., 2011. Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust: examples from the eastern Tethyan metallogenic domain: Ore Geolgy Review, v. 39, p. 21-45.
  32. -Khashgerel, B.E., Kavalieris, I. and Hayashi, K., 2008. Mineralogy, textures, and whole-rock geochemistry of advanced argillic alteration: Hugo Dummett porphyry Cu-Au deposit, Oyu Tolgoi mineral district: Mongolia. Mineralum Deposita, v. 43, p. 913-932.
  33. -Li, Y.B. and Liu, J.M., 2006. Calculation of sulfur isotope fractionation in sulfides: Geochimica et Cosmochimica Acta, v. 70, p. 1789-1795.
  34. -Mckibben, M.A. and Eldrifce, C.S., 1990. Radical sulfur isotope zonation of pyrite accompanying boiling and epitherinal gold deposition: A SHRIMP study of the Valles Caldera, New Mexico: Economic. Geology, v. 85, p. 1917-1925.
  35. -Mahoney, J.J., Frei, R., Tejada, M.L.G., Mo, X.X., Leat, P.T. and Nägler, T.F., 1998. Tracing the Indian Ocean mantle domain through time: isotopic results from old West Indian, East Tethyan, and South Pacific seafloor: Journal of Petrology, v. 39, p. 1285-1306.
  36. -Meinert, L.D., Hedenquist, J.W., Satohi, H. and Matsuhisa, Y., 2003. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids: Economic Geology, v. 98, p. 147-156.
  37. -Miller, C.F., Schuster, R., Klötzli, U., Frank, W. and Purtscheller, F., 1999. Post–collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr–Nd–Pb–O isotopic constraints for mantle source characteristics and petrogenesis: Journal of Petrology, v. 40, p. 1399-1424.
  38. -Moritz, R., Rezeau, R., Ovtcharova, M., Tayan, M., Melkonyan, R., Hovakimyan, S., Ramazanov, V., Selby, D., Ulianov, A., Chiaradia, M. and Putlitz, B., 2016. Long-lived, stationary magmatism and pulsed porphyry systems during Tethyan subduction to post-collision evolution in the southernmost Lesser Caucasus, Armenia and Nakhitchevan: Gondwana Research, v. 37, p. 465-503.
  39. -Moritz, R., Mederer, J., Ovtcharova, M., Spikings, R., Selby, D., Melkonyan, R. and Hovakimyan, S., 2013. Jurassic to Tertiary Metallogenic Evolution of the Southernmost Lesser Caucasus, Tethys Belt: Mineral Deposit Research for a High-tech World, 12th SGA Biennial Meeting, Uppsala, Sweden, v. 3, p. 1443-1450.
  40. -Ohmoto, H. and Rye, R.O., 1979. Isotopes of sulfur and carbon, in Barnes H. L. Geochemistry of hydrothermal deposits, 2th edition, Weily Interscience, New York, p. 509-567.
  41. -O’Neil, J.R. and Taylor, H.P., 1969. Oxygen isotope equilibrium between muscovite and water: Journal of Geophysical Research, v. 74, p. 1414-1437.
  42. -Parsapoor, A., Khalili, M., Tepley, F. and Maghami, M., 2015. Mineral chemistry and isotopic composition of magmatic, re-equilibrated and hydrothermal biotites from Darreh-Zar porphyry copper deposit, Kerman (southeast of Iran): Ore Geology Reviews, v. 66, p. 200-218.
  43. -Pettke, T., Felix Oberli, F. and Heinrich, C.A., 2010. The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions: Earth and Planetary Science Letters, v. 296, p. 267-277.
  44. -Richards, J.P., 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins: Ore Geology, Reviwes, v. 40-1, p. 1-26.
  45. -Savin, S.M. and Epstein, S., 1970. The oxygen and hydrogen isotope geochemistry of clay minerals: Geochimica et Cosmochimica Acta, v. 34, p. 25-42.
  46. -Shafiei, B., 2010. Lead isotope signatures of the igneous rocks and porphyry copper deposits from the Kerman Cenozoic magmatic arc (SE Iran), and their magmatic– metallogenetic implications: Ore Geology Reviwes, v. 38, p. 27-36.
  47. -Shmulovich, K.I., Landwehr, D., Simon, K. and Heinrich, W., 1999. Stable isotope fractionation between liquid and vapor in water-salt systems up to 600 0C: Chemical Geology, v. 157, p. 343-354.
  48. -Sillitoe, R.H., 2010. Porphyry copper systems: Economic Geology, v. 105, p. 341-363.
  49. -Stacey, J.S. and Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two stage model: Earth and Planetary Science Letters, v. 26, p. 207-221.
  50. -Sun, W., Huang, R.F., Li, H., Hua, Y.B., Zhang, C., Sun, S.J., Zhang, L.P., Ding, X., Li, C.Y., Zartmana, R.E. and Ling, M.X., 2015. Porphyry deposits and oxidized magmas: Ore Geology Reviews v. 65, p. 97-131.
  51. -Suzuoki, T. and Epstein, S., 1976. Hydrogen isotope fractionation between OH-bearing minerals and water: Geochimica et Cosmochimica Acta, v. 40, p. 1229-1240.
  52. -Taylor, H.P., 1974. The application of oxygen and hydrothermal isotope studies to problems of hydrothermal alteration and ore deposition: Economic Geology, v. 69, p. 843-883.
  53. -Taylor, B.E., 1992. Degassing of H2O from rhyolite magma during eruption and shallow intrusion, and the isotopic composition of magmatic water in hydrothermal systems, in Hedenquist, J.W., ed., Magmatic contributions to hydrothermal systems: Geological Survey of Japan Report, v. 279, p. 190-195.
  54. -Taylor, B.E., 1988. Degassing of rhyolitic magmas: Hydrogen isotope evidence and implications for magmatic-hydrothermal ore deposits: Canadian Institute of Mining and Mineralogy Special, v. 39, p. 33-49.
  55. -Todt, W., Cliff, R.A., Hanser, A. and Hofmann, A.W., 1984. 202Pb+205Pb spike for lead isotopic analysis: Terra Cognita, v. 4, p. 209-221.
  56. -Zaheri-Abdehvand, N., Tarantola, A., Rasa, I., Hassanpour, S. and Peiffert, C., 2020. Metal content and P-T evolution of CO2-bearing ore-forming fluids of the Haftcheshmeh Cu-Mo porphyry deposit, NW Iran: Journal of Asian Earth scinces, v. 190, p. 104-116.
  57. -Zaheri-Abdehvand, N., Rasa, I., Hassanpour, S. and Tarantola, A., 2018. CO2-Rich Magmatic-Hydrothermal fluid controlling Cu-Mo Mineralization at Haftcheshmeh Porphyry Deposit, NW Iran: TRIGGER International Conference, School of Geology, University of Tehran. Iran, November 12-16.
  58. -Zhang, C., Ma, C., Holtz, F., Koepke, J., Wolff, P.E. and Berndt, J., 2013. Mineralogical and geochemical constraints on contribution of magma mixing and fractional crystallization to high–Mg adakite–like diorites in eastern Dabie orogen, East China: Lithos, v. 172, p. 118-138.
  59. -Zheng, Y.F., 1993. Calculation of oxygen isotope fractionation in hydroxyl bearing silicates: Earth and Planetary Science Letters, v. 120, p. 247-263.
  60. -Zhu, D.C., Zhao, Z.D., Pan, G.T., Lee, H.Y., Kang, Z.Q., Liao, Z.L., Wang, L.Q., Li, G.M., Dong, G.C. and Liu, B., 2009. Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: products of slab melting and subsequent melt peridotite interaction?: Journal of Asian Earth Sciences, v. 34, p. 298-309.
  61. -Zindler, A. and Hart, S., 1986. Chemical geodynamics: Annual review of earth and planetary sciences, v. 14, p. 493-571.