بررسی پراکنش و منشا فلزات سنگین در آلودگی زمین زاد منابع خاک حوضه آبریز بردسیر (استان کرمان)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زمین‌شناسی محیطی، پژوهشکده علوم پایه کاربردی، جهاد دانشگاهی، تهران، ایران

چکیده

فلزات سنگین می‌توانند از دو منشا طبیعی و یا انسانی وارد آب، خاک و چرخه مواد غذایی گردند که به دلیل عدم خودپالایی، انباشتگی در زنجیره غذایی و نبود نقش زیستی در بدن موجودات دارای خطرات زیست‌محیطی و بهداشتی می‌باشند. هدف از این مطالعه بررسی و پایش غلظت آرسنیک، آنتیموان، سرب و کادمیوم و ترسیم نقشه توزیع آلودگی در خاک زراعی حوضه آبریز بردسیر است. نمونه‌برداری از خاک براساس زمین‌شناسی، رعایت پراکنش مناسب، قضاوت کارشناسی و به‌ صورت تصادفی انجام شد. در این راستا 105 نمونه خاک از عمق زیر 10 سانتیمتری برداشت گردید. نمونه‌ها با الک 2 میلیمتری الک شدند و بخش کوچک‌تر از 2 میلیمتر پودر و جهت آنالیز شیمیایی به روش ICP-MS به آزمایشگاه ارسال گردیدند. تحلیل آماری اندازه‌گیری غلظت فلزات سنگین منتخب، شاخص زمین انباشت، درجه آلودگی، فاکتور پتانسیل ریسک و ریسک اکولوژیک انجام شد. نتایج تحلیل آماری مبین عدم همبستگی آرسنیک و آنتیموان، روش انتقال متفاوت این فلزات و آلودگی کم تا شدید از نظر شاخص‌های آلودگی می‌باشد. نتایج کلی حاصل از نقشه‌های پراکنش و غلظت As و Sb مبین آلودگی خاک به آرسنیک در بخش مرکزی و شرقی تا خروجی حوضه در شمال محدوده است و آلودگی به آنتیموان در جنوب، غرب و شرق و تا حدودی مرکز محدوده واقع‌ شده ‌است. منشا اصلی آلودگی در محدوده زمین‌زادی و ناشی از زون‌های دگرسانی و ولکانیک‌های سنوزوئیک است و منابع بشرزاد در ایجاد آلودگی اهمیت ندارند و تنها تفاوت روش انتقال آلودگی عناصر آرسنیک و آنتیموان سبب پراکندگی و تمرکز متفاوت آلودگی در محدوده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of distibution pollution and source of heavy metals in the agricultural soil of Bardsir Basin (Kerman Province)

نویسندگان [English]

  • Raheleh Hatefi
  • kamal khodaei
  • Farhad Asadian
  • Sliakbar Shahsavari
Department of Environmental Geology, Research Institute of Applied Sciences (ACECR) , Tehran, Iran
چکیده [English]

Introduction
The geochemical characteristics of materials in the environment are related to the chemical properties of the sources. In other words, the concentration of heavy metals in the soil depends on the type and chemistry of the parent rocks, which has formed the soil through the weathering processes and has led to different concentration of heavy metals in the soils. In addition to the composition of the parent rocks, a variety of natural and man-made factors are effective in increasing element concentration in the environment which causes intense pollution. Therefore, in short, the earth has a direct impact on human health through the food chain (eating and drinking) and the inhalation of dust and gases. Thus, the main purpose of this study is investigation and monitoring the arsenic, antimony, lead and cadmium concentrations and plotting the map of pollution distribution in the agricultural soil of Bardsir catchment.
Methodology
Position of sampling points is determined according to expert judgment based on previous research, topographic maps, geology, satellite images and field study. These were selected to obtain the suitable distribution and zoning map of the study area. Also, characteristics identify the effect of geology on the pollution of the study area. 105 samples of composed agricultural soils were collected by averaging method from less than 10 cm in depth to prevent the potential effect of anthropogenic pollutants. Samples were sieved with a 2 mm sieve and particles smaller than 200 mesh were sent to the laboratory for 4-element chemical analysis by ICP-MS method. Statistical analysis was performed to measure the concentration of heavy metals, index of geo-accumulation, degree of pollution, risk potential factor and ecological risk.
Results
The results show that agricultural soils are polluted by arsenic and antimony (14% in terms of arsenic and 29.5% in terms of antimony), more than allowable levels in some parts of the study area. Statistical analysis also verified that only As and Sb show low to intense pollution while the contamination and risk of Cd and Pb are low. The As zoning map shows that the contaminated agricultural soils are located in the center and north (basin outlet) of the study area. This may be related to the irrigation with polluted river, which is located in the downstream of volcanic outcrops, or to the synergy of different polluted waters at the outlet of the area or flood irrigation. These can transfer the dissolved pollutants from upstream to agricultural land. The Sb concentration zoning shows that the agricultural soils with the highest pollution are located in the upstream and near outcrops including south, west, east, and center of the study area, which is due to the low solubility of antimony compared to arsenic.
 
 
Conclusion
The overall results indicate that the agricultural soil is polluted to arsenic and antimony in some areas. Evaluation of the origin of these elements showed that the pollution has mostly geogenic resources and is derived from alteration and Cenozoic volcanic outcrops while anthropogenic pollution showed a small contribution to pollution. The transport and re-precipitation of heavy metals is controlled by dissolution- precipitation and adsorption-desorption reactions, and its transporting is controlled by oxyhydroxides of these elements in the study area.

کلیدواژه‌ها [English]

  • Arsenic
  • Antimony
  • Geology
  • Pollution index
-احمدی مقدم، پ. و احمدی پور، ح.، 1393. بررسی رخساره شناسی و محیط تشکیل توالی‌های آتشفشانی کوه چهل تن، واقع در جنوب باختر بردسیر (استان کرمان)، فصلنامه علوم زمین، شماره 94، ص 103-112.
-خلیلی مبرهن، ش. و احمدی پور، ح.، 1394. مطالعات رخساره شناسی آتشفشان بیدخوان (استان کرمان)، فصلنامه علوم زمین، شماره 95، ص 111-122.
-شفیعی، ب.، 1387. الگوی فلززایی کمربند مس پورفیری کرمان و رهیافت‌های اکتشافی آن، رساله دکتری، دانشگاه شهید باهنر کرمان، 257 ص.
-فاتحی چنار، ح.، احمدی پور، ح. و مرادیان شهربابکی، ع.، 1390. ژئوشیمی و جایگاه زمین ساختی توده‌های نفوذی دره زارچوئیه (جنوب شرق بردسیر، کرمان)، پترولوژی، شماره 8، ص 69-84.
-نظری، ی. و عباس نژاد، ا.، 1393. تعیین منشأ و پراکندگی آرسنیک در آب‌های زیرزمینی دشت راین (جنوب خاور کرمان) با استفاده از تکنیک‌های آماری، فصلنامه علوم زمین، شماره 94، ص 117-128.
 
 
 
-Abbasnejad, A., Mirzaie, A., Derakhshani, R. and Esmaeilzadeh, E., 2013. Arsenic in groundwaters of the alluvial aquifer of Bardsir plain, SE Iran. Environmental Earth Science, v. 69, p.  2549-2557.
-Abrahim, G.M.S. and Parker, R.J., 2008. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, v. 136, p. 227-238.
-Arribere, M.A., Ribeiro, G.S., Bubach, D.F. and Vigliano, P.H., 2006. Trace elements as fingerprint of Lake of Provenance and of species of some native and exotic fish of Northern Patagonian Lakes. Biological Trace Element Research, v. 111, p. 71-95.
-Burger, J., 2008. Assessment and management of risk to wildlife from cadmium. Science of The Total Environment, v. 389, p. 37-45.
-De Temmerman, L., Vanongeval, L., Boon, W. and Hoenig, G., 2003, Heavy metal content of arable soils in northern Belgium. Water, Air and Soil Pollution, v. 148, p. 61-73.
-Hakanson, L., 1980. An ecological risk index for aquatic pollution control: a sedimentological approach: Water Research, v. 14, p. 975-1001.
-Haquea, T.A., Tabassuma, M., Rahmana, J., Alam Siddiqueb, M.N.E., Mostafab, G., Khalaquea, A., Abedinea, Z. and Hamidic, H., 2020.  Environmental analysis of arsenic in water, soil and food materials from highly contaminated area of Alampur village, Amjhupi Union, Meherpur. Advanced Journal of Chemistry: A, v. 3-2, p. 181-191.
-Kabata-Pendias, A. and Mukherjee, A.B., 2007. Trace Elements from soil to human. Springer-Verlag Berlin Heidelberg, 550 p.
-Kabata-Pendias, A., 2010. Trace elements in soils and plants: CRC press.
-Krishna, A.K., Satyanarayanan, M. and Govil, P.K., 2009. Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: a case study from Patancheru, Medak District, Andhra Pradesh, India. Journal of Hazardous Materials, v. 167, p. 366-373.
-Muller, G., 1969. Index of geoaccumulation in sediments of the Rhine River: Geojournal, v. 2, p. 108-118.
-Münster, U., Satsuka, S. and Cedrelöf, G., 2014. Asian Environments Connections across Borders, Landscapes, and Times, LudwigMaximilians Universität, Germany.
-Missimer, T., Teaf, C., Beeson, W., Maliva, R., Woolschlager, J. and Covert, D., 2018. Natural background and anthropogenic arsenic enrichment in Florida soils, surface water, and groundwater: A review with a discussion on public health risk. International Journal of Environmental Research and Public Health, v. 15, p. 22-48.
-Ngoc, K.C., Nguyen, N.V., Dinh, B.N., Thanh, S.L., Tanaka, S., Kang, Y., Sakurai, K. and Iwasaki, K., 2009. Arsenic and heavy metal concentrations in agricultural soils around tin and tungsten mines in the Dai Tu district, N. Vietnam. Water, Air and Soil Pollution, v. 197, p. 75-89.
-Nriagu, J.O. and Pacyna, J.M., 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace-metals. Nature, v. 333, p. 134-139.
-Pierce, M.L. and Moore, C.B., 1982. Adsorption of arsenite and arsenate on amorphous iron oxides. Water Research, v. 16, p. 1247-1253.
-Siegel, F.R., 2002. Environmental geochemistry of potentially toxic metals. Springer, Berlin, 218 p.
-Smedley, P.L. and Kinniburgh, D.G., 2002. A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, v. 17, p. 517-568.
-Pekey, H., Karaka, D. and Bakoglu, M., 2004. Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses. Marine Pollution Bulletin, v. 49, p. 809-818.
-Qishlag, A., Moore, F. and Forghani, G., 2007. Impact of untreated wastewater irrigation on soils and crops in Shiraz suburban area, SW Iran. Environmental Monitoring and Assessment, v. 141, p. 257-273.
-Ribeiro Guevara, S., Bubach, D., Vigliano, P., Lippolt, G. and Arribere, M., 2004. Heavy metal and other trace elements in native mussel Diplodon chilensis from Northern Patagonia Lakes, Argentina. Biological Trace Element Research, v. 102, p. 245-263.
-Rodríguez Martín, J.A., Ramos-Miras, J.J., Boluda, R. and Gil, C., 2013a. Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain), Geoderma, v. 200-201, p. 180-188.
-Seshan, B.R.R., Natesan, U. and Deepthi, K., 2010. Geochemical and statistical approach for evaluation of heavy metal pollution in core sediments in southeast coast of India. International Journal of Environmental Science, v. 7, p. 291-306.
-Shahram, E., Akbar, H.M., Naser, J., Seyed, F.N., Seyed, M.N. and Mohammad Ali, E., 2011. Trace element level in different tissues of Rutilus frisii kutum collected from Tajan River, Iran. Biological Trace Element Research, v. 143, p. 965-973.
-Shakeri, A., Moor, F. and Razikordmahalleh, L., 2010. Distribution of soil heavy metal contamination around industrial complex zone, Shiraz, Iran. 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia.
-Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K. and Sutton, D.J., 2012. Heavy metals toxicity and the environment. National Institute of Health, v. 101, p. 133-164.
-Thomilson, D.C., Wilson, D.J., Harris, C.R. and Jeffrey, D.W., 1980. Problem in heavy metals in estuaries and the formation of pollution index. Helgol. Wiss. Meeresunlter, v. 33(1-4), p. 566-575.