مطالعه زادگاه و دگرگونی درجه پائین میکاشیست های حاشیه قاره‌ای مرتبط با آمیزه رنگین گیسیان- جنوب ارومیه

نوع مقاله : مقاله پژوهشی

نویسنده

گروه زمین‌شناسی، دانشکده علوم، دانشگاه ارومیه، ارومیه، ایران

چکیده

شیست­های منطقه گیسیان در جنوب ارومیه از اجزاء افیولیت سیلوانا در منتهی­الیه شمال غربی ایران بوده و در بخش آمیزه رنگین در نزدیکی مرز با ترکیه و عراق برونزد دارند. کانی­شناسی ساده این واحد سنگی (موسکویت، بیوتیت، کلریت، کوارتز، فلدسپار و دانه اپک) و فقدان کانی­های شاخص متاپلیت­ها در آنها مانعی در جهت تخمین شرایط دگرگونی ناحیه­ای در این سنگ­ها می­باشد. ژئوشیمی سنگ­ها حاکی از یک سنگ والد رسوبی اسیدی (شبیه پوسته قاره­ای فوقانی) با تغذیه کننده آذرین در حد تراکیت به همراه درجه بالایی از شاخص­های هوازدگی و تغییر ترکیب در آن می­باشد. این رسوبات نابالغ در یک محیط تکتونیکی نظیر حاشیه فعال قاره تکوین یافته و سپس طی تصادم قاره­ها دچار دگرگونی ناحیه­ای درجه پایین (LT/LP-MP) با دو مرحله دگرشکلی شده­اند. تخمین دما و فشار به روش مختلف از جمله ترسیم شبه­برش دما- فشار برای ترکیب سنگ­کل معین شیست­های گیسیان، برآورد متوسط دما و فشار با واکنش­های احتمالی و نیز قطع تعادل­های چندگانه واکنش­های محاسبه شده توسط نرم­افزار THERMOCALC صورت گرفته و نتیجه برای شرایط اوج دگرگونی ناحیه­ای دمای کمتر از 20± 550 درجه سانتیگراد و فشار کمتر از 1 ± 5/5 کیلوبار را به دست داده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The provenance studies and metamorphic conditions of the Gysian colored mélange low-grade active continental margin schists - south of Urmia

نویسنده [English]

  • monir modjarrad
Geology Department, Faculty of Sciences, Urmia University, Urmia, Iran
چکیده [English]

Introduction
Superposition of tectonic and metamorphic proceedings at the margins of the earth’s plates produce some rather complex geological terranes. During the subduction of an oceanic plate, marine sediments are generally frayed off from the subducting plate and accumulate as a wedge-shaped mass. It is usually called an active-margin wedge which develops along the boundary of the non-subducted plate. This tectonic unit is commonly reported to occur in a collisional regime with low-grade metamorphic symptoms.
Matrials and Method
Mesoscopic samples collected from the region were selected by random sampling from Gysian to Kachaleh villages (Iran's border with Turkey) and surrounding heights by re-examining and ensuring less weathering for microscopic sections and chemical analysis. 10 samples were analyzed in Zarazma Zangan laboratory for obtaining total rock geochemistry with XRF, ICP-MS methods.
Results and discussion
Petrography of metapelites in the Gysian colored mélange combination is very simple and there is no porphyroblast in it. Paragenesis of mica, feldspar, and quartz is common in all samples. Due to the existence of foliation in the rocks, which is also well evident in the hand sample. These can be called mica schists in which white mica is more than biotite. Also, graphite has been seen in some samples. Most of the schists of Gysian region have 56-70% silica. The frequency of aluminum oxide was high in the spectrum of 14-20%. The total reported iron oxide changes between 8 - 4 % (bearing in mind iron minerals such as chlorite and biotite). Magnesium oxide often varied from 2 to 4 %. With the aim of determining the rock classification, the diagrams based on the major oxide base and trace elements were used. On this basis, the schist’s parent sedimentary rock has a name between grey wake to lihtarenite and wake to arkoses. The igneous feeder of the sedimentary basin is trachyte to alkali rhyolite. Therefore, in most of the plots of this study, the samples related to these alluvial deposits are produced from an acidic to intermediate igneous parent. The temperature range between 400 and 550 °C at maximum pressure from 3.5 to 5.5 kbar, indicates the conditions of low temperature/medium pressure metamorphism in the active continental margin. The sediment should at least be buried at a depth of more than 10-15 km, which matches with the subduction conditions and active margins of the continent.
Conclusions
The studied schists are outcropped in the southern part of Urmia at the Gysian area, a part of the colored mélange of Silvana. The simple mineralogy of the lithological unit and lack of index minerals in them is a problem in estimating the metamorphic conditions of the region and conversely, the total rock chemistry of these rocks is possible to estimate their sedimentary provenance. The geochemistry indicates an acidic sedimentary parent (resembling the upper continental crust) and igneous feeder of trachyte to alkali rhyolite with a high degree of weathering. These sediments were formed in the active continental margin tectonic setting and then metamorphosed during the collision of the continents, the low grade (LT/MP) under two deformation stages.
 

کلیدواژه‌ها [English]

  • Gysian colored mélange
  • Urmia
  • Low grad metamorphism
  • Sedimentary provenance
  • Active continental margin
-بابایی، ا. و مجرد، م.، 1396. پترولوژی و ژئوشیمی گابروهای دره بنار زیوه، جنوب ارومیه، بیست و پنجمین همایش بلورشناسی و کانی شناسی­ایران، یزد، ایران.
-حاج ملاعلی، ا. و شهرابی، م.، 1385. نقشه 1:100000 سیلوانا، شماره 4964، سازمان زمین­شناسی کشور، تهران.
-رضایی موسی درق، ع. و مجرد، م.، 1396. سنگ­های اولترامافیک افیولیت سیلوانا جنوب ارومیه، بیست و پنجمین همایش بلورشناسی و کانی­شناسی ایران، یزد، ایران.
-عبدلله، ک. و مجرد، م.، 1396. ژئوشیمی سرپانتینیت­های گیسیان-زیوه، جنوب ارومیه، سی و ششمین همایش ملی و سومین کنگره بین­المللی علوم زمین، تهران، ایران.
-علیزاده، ا.، 1390. سن جایگیری آمیزه رنگی جنوب غرب ارومیه، سی امین گردهمایی علوم زمین، تهران، ایران.
-گیلانی، ن. و مجرد، م.، 1396. پترولوژی و ژئوشیمی گرانیتوئید سوسن آباد زیوه، جنوب ارومیه، سی و ششمین همایش ملی و سومین همایش بین المللی علوم زمین، تهران، ایران.
-مجرد، م.، مؤذن، م. و مؤید، م.، 1389. مطالعه سنگ کل متاپلیت­های شاهیندژ: زادگاه رسوبی و پاراژنزهای کانیایی، پترولوژی، دوره 1، شماره 4، ص 73-88.
 
 
 
-Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution: American journal of science, v. 304(1), p. 1-20.
-Allen, M.B., Kheirkhah, M., Emami, M.H. and Jones, S.J., 2011. Right-lateral shear across Iran and kinematic change in the Arabia—Eurasia collision zone: Geophysical Journal International, v. 184(2), p. 555-574.
-Azizi, H. and Asahara, Y., 2013. uvenile granite in the Sanandaj–Sirjan Zone, NW Iran: Late Jurassic–Early Cretaceous arc–continent collision: International Geology Review, v. 55, p. 1523-1540.
-Balen, D., Massonne, H.J. and Lihter, I., 2017. Alpine metamorphism of low-grade schists from the Slavonian Mountains (Croatia): new P-T and geochronological constraints: International Geology Review, DOI: 10.1080/00206814.2017.1328710
-Berberian, M. and King, G.C. P., 1981. Towards a paleogeography and tectonic evolution of Iran: Canadian journal of earth sciences, v. 18(2), p. 210-265.
-Bhatia, M.R., 1983. Plate tectonics and geochemival composition of sandstones: Journal of Geology, v. 92, p. 181-193.
-Boedo, F.L., Willner, A.P., Vujovich, G.I. and Massonne, H.J., 2016. High pressure/low temperature metamorphism in the collision zone between the Chilenia and Cuyania microcontinents (Western Precordillera, Argentina): Journal of South American Earth Sciences, v. 72, p. 227-240. doi:10.1016/j.jsames.2016.09.009
-Bourdelle, F. and Cathelineau, M., 2015. Low-temperature chlorite geothermometry: A graphical representation based on a T–R2+–Si diagram: European Journal of Mineralogy, v. 27, p. 617-626. doi:10.1127/ejm/2015/0027-2467
-Brunet, M.F., Granath, J. and Wilmsen, M., 2009. South Caspian to Central Iran basins: Introduction: Geological Society London Special Publications, 312 p. 
-Calderón, M., Fosdick, J.C., Warren, C., Massonne, H.J., Fanning, C.M., Fadel, C.L., Schwanethal, J., Fonseca, P.E., Galaz, G., Gaytán, D. and Hervé, F., 2012. The low-grade Canal de las Montañas Shear Zone and its role on the tectonic emplacement of the Sarmiento Ophiolitic Complex and Late Cretaceous Patagonian Andes orogeny, Chile: Tectonophysics, v. 524-525, p. 165-185. doi:10.1016/ j.tecto. 2011.12.034
-Cloos, M., 1984. Flow mélanges and the structural evolution of accretionary wedges, in Mélanges—their nature, origin, and significance: Special Paper of the Geological Society of America, v. 198, p. 71-79.
-Cope, T., Ritts, B.D., Darby, B.J., Fildani, A. and Graham, S.A., 2005. Late Paleozoic sedimentation on the Northern margin of the North China Block: implications for regional tectonics and climate Change: International Geology Review, v. 47, p. 270-296.
-Cox, R., Lowe, D.R. and Cullers, R.L., 1995. The influence of sediment recycling and basement composition on evolution of mud rock chemistry in the southwestern United States: Geochim Cosmochim Acta, v. 59, p. 2919-2940. https ://doi.org/10.1016/0016-7037(95)00185-9
-Degraaff-surpless, K., Graham, S.A., Wooden, J.L. and McWiliams, M.O., 2002. Detrital zircon provenance analysis of the Great Valley Group, California: evolution of an arc-forearc system: Geology Society of American Bulltain, v. 114, p. 1564-1580.
-Fedo, C.M., Nesbitt, H.W. and Young, G.M., 1995. Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with impilications for paleo weathering conditions and provenance: Geology, v. 23, p. 921-924.
-Floyd, P.A. and Leveridge, B.E., 1987. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones: Journal of Geological Society of London, v. 144, p. 531-542.
-Floyd, P.A., Winchester, J.A. and Park, R.G., 1989. Geochemistry and tectonic setting of Lewisian clastic metasediments from the early Proterozoic Lock Marie Group of Gairlock, Scottland: Precambrian Research, v. 45, p. 203-214.
-García-Ramírez, C.A., Casadiegos-Agudelo, L. and Castellanos-Meléndez, M.P., 2019. Petrology and geochemistry of the Silgara Schists in the Silos area, Santander Massif, Colombia: Revista DYNA, v. 86(209), p. 271-280.
-Garcia, D., Fonteilles, M. and Moutte, J., 1994. Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites: Journal of Geology, v. 102, p. 411-322.
-Garzanti, E., Doglioni, C., Vezzoli, G. and Ando, S., 2007. Orogenic belts and orogenic sediment Provenance: Journal of Geology, v. 115, p. 315-334.
-Herron, M.M., 1988. Geochemical classification of terrigenous sands and shales from core or log data: Journal of Sedimentary Petrology, v. 58, p. 820-829.
-Hofmann, A., 2005. The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton greenstone belt: implications for tectonic, hydrothermal and surface processes during mid-Archaean times: Precambrian Research, v. 143, p. 23-49.
-Holland, T.J.B. and Powell, R., 1998. An internally consistent thermodynamic dataset for phases of petrological interest: Journal of Metamorphic Geology, v. 16, p. 309-343. doi:10.1111/j.1525-1314.1998.00140.x
-Karig, D.E. and Sharman, G.F., 1975. Subduction and accretion in trenches: Geological Society of American Bulletin, v. 86, p. 377-389.
-Kasanzu, C., Maboko, M.A.H. and Manya, S., 2008. Geochemistry of fine-grained clastic sedimentary rocks of the Neoproterozoic Ikorongo Group, NE Tanzania: Implications for provenance and source rock weathering: Precambrian Research, v. 164, p. 201-213.
-Kutterolf, S., Diener, R., Schacht, U. and Krawinkel, H., 2008. Provenance of the Carboniferous Hochwipfel Formation-Geochemistry versus petrography: Sedimentary Geology, v. 203, p. 246-266.
-Lanari, P., Wagner, T. and Vidal, O., 2014. A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO–FeO–Al2O3–SiO2–H2O: Applications to P–T sections and geothermometry: Contribution to Mineralogy and Petrology, v. 167, p. 1–19. doi:10.1007/s00410-014-0968-8
-Long, X., Sun, M., Yuan, C., Xiao, W. and Cai, K., 2008. Early Paleozoic sedimentary record of the Chinese Altai; Implications for its tectonic evolution: Sedimentary Geology, v. 208, p. 88-100.
-Lo Pò, D. and Braga, R., 2014. Influence of ferric iron on phase equilibria in greenschist facies assemblages: The hematiterich metasedimentary rocks from the Monti Pisani (Northern Apennines): Journal of Metamorphic Geology, v. 32, p. 371–387. doi:10.1111/jmg.2014.32.issue-4
-Lo Pò, D., Braga, R. and Massonne, H.J., 2016. Petrographic, mineral and pressure-temperature constraints on phyllites from the Variscan basement at Punta Bianca, Northern Apennines, Italy: Italian Journal of Geosciences, v. 135(3), p. 489-502. doi:10.3301/IJG.2015.29
-Maas, and McCulloch, 1991. The provenance of Archean clastic metasediments in the Narryer Gneiss Complex, Western Australia: Trace element geochemistry, Nd isotopes and U–Pb ages for detrital zircons: Geochimica et Cosmochimica Acta, v. 55, p. 1915–1932.
-Maynard, J.B., Valloni, R. and Yu, H., 1982. Composition of modern deep sea sands from arc-related basin: Geology Society of London, Special Publication, v. 10, p. 551-561.
-McLennan, S.M., 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust: Geochemistry Geophysics Geosystems, v. 2, p. 1021.doi:10.1029/2000GC000109
-Meszaros, E., Verga, A., Raucsik, B., Benko, Z., Heincz, A. and Hauzenberger, C.A., 2019. Provenance and Variscan low‑grade regional metamorphism recorded in slates from the basement of the (SW Hungary): International Journal of Earth Sciences, v. 108, p. 1571-1593.
-Middlemost, E.A.K., 1991. Towards a comprehensive classification of igneous rocks and magmas: Earth Sciences Review, v. 31, p. 73-87.
-Nadimi, A., 2010. Active strike-slip faults in the central part of the Sanandaj-Sirjan Zone of Zagros Orogen (Iran): Doctoral dissertation, PhD thesis, Faculty of Geology, University of Warsaw, Poland.
-Nadimi, A. and Konon, A., 2012. Strike-slip faulting in the central part of the Sanandaj-Sirjan Zone, Zagros Orogen, Iran: Journal of Structural Geology, v. 40, p. 2-16.
-Nesbitt, H.W. and Young, G.M., 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations: Geochimica et Cosmochimica Acta, v. 48, p. 1523-1534.
-Pettijohn, F.J., Potter, P.E. and Siever R., 1972. Sand and sandstone. Springer- Verlag, New York.
-Potter, P.E., Maynard, J.B. and Depetris, P.J., 2005. Mud and Mudstones: Introduction and Overview: Heidelberg, Springer-Verlag, 297 p.
-Roser, B.P. and Korsch, R.J., 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 contents and K2O/Na2O ratio: Journal of Geology, v. 94, p. 635-650.
-Roser, B.P. and Korsch, R.J., 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data: Chemical Geology, v. 67, p. 119-139.
-Sengor, A.M.C and Okurogullari, A.H., 1991. The role of accretionary wedges in the growth of continents: Asiatic examples from Argand to plate tectonics: Eclogae Geologicae Helvetiae, v. 84, p. 535-597.
-Şengör, A.C., Özeren, M.S., Keskin, M., Sakınç, M., Özbakır, A.D. and Kayan, I., 2008. Easte Turkish high plateau as a small Turkic-type orogen: Implications for post-collisional crust-forming processes in Turkic-type orogens: Earth-Science Reviews, v. 90(1-2), p.1-48.
-Shaw, D.M., 1956. Geochemistry of pelitic rocks: Part III. Major elements and general geochemistry: Geology Society of American Bulltain, v. 67, p. 919-934.
-She, Z.B., Ma, C.Q., Mason, R., Li, J.W., Wang, G.C. and Lei, Y.H., 2006. Provenance of the Triassic             Songpan-Ganzi flysch, west China: Chemical Geology, v. 231, p. 159-175.
-Sheikholeslami, M.R., 2015. Deformations of Palaeozoic and Mesozoic rocks in southern Sirjan, Sanandaj–Sirjan Zone, Iran: Journal of Asian Earth Sciences, v. 106, p. 130-149.
-Slack, J.F., Dumoulin, J.A., Schmidt, J.M., Young, L.E. and Rombac, C.S., 2004. Paleozoic sedimentary rocks in the red dog Zn-Pb-Ag district and vicinity, Western Brooks Range, Alaska: provenance, deposition, and metallogenic significance: Economic Geology, v. 99, p. 1385-1414.
-Spear, F.S., 1993. Metamorphic phase equilibria and pressuretemperature- time paths: Washington, DC, Mineralogical Society of America Monograph, 799 p.
-Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, in Saunders, A.D., and Norry, M.J., eds., Magmatism in Ocean Basins, v. 42: Geological Society London Special Publication, London, p. 313-345.
-Sun, W.H., Zhou, M.F., Yan, D.P., Li, J.W. and Ma, Y.X., 2008. Provenance and tectonic setting of the Neoproterozoic Yanbian Group, western Yangtze Block (SW China): Precambrian Research, v. 167(1-2), p. 213-236.
-Tarbuck, E.J. and Lutgens, F.K., 1994. Earth science, 7th ed.: New York, NY, Macmillan College Publishing Company, 659 p.
-Taylor, S.R. and McLennan, S.M., 1981. The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks: Phil Trans R Soc, v. A301, p. 381-399.
-Toulkeridis, T., Clauer, N., Kroner, A., Reimer, T. and Todt, W., 1999. Characterization, provenance, and tectonic setting of Fig Tree graywackes from the Archean Barberton Greenstone Belt, South Africa: Sedimentary Geology, v. 124, p. 113-129.
-Vergara, M., Levi, B., Nystrom, J.O. and Cancino, A., 1995. Jurassic and Early Cretaceous island arc volcanism, extension, and subsidence in the Coat Range of central Chile: Geology Society of American Bulltain, v. 107, p. 1427-1440.
-Vidal, O. and Parra, T., 2000. Exhumation paths of high-pressure metapelites obtained from local equilibria for chloritephengite assemblages: Geological Journal, v. 35, p. 139- 161. doi:10.1002/(ISSN)1099-1034.
-Werner, C.D., 1987. Saxonian granulites-igneous or lithoigneous: a contribution to the geochemical diagnosis of the original rock in high-metamorphic complexes: Zfl-Mitteilungen, v. 133, p. 221-250.
-Willner, A.P., Maresch, W.V., Massonne, H.J., Sandritter, K. and Willner, G., 2016. Metamorphic evolution of blueschists, greenschists, and metagreywackes in the Cretaceous Mt. Hibernia Complex (SE Jamaica): European Journal of Mineralogy, v. 28, p. 1059-1078. doi:10.1127/ejm/2016/0028-2561
-Zheng, Y.F., Zhou, J.B., Wu, Y.B. and Xie, Z., 2005. Low-Grade Metamorphic Rocks in the Dabie-Sulu Orogenic Belt: A Passive-Margin Accretionary Wedge Deformed during Continent Subduction: International Geology Review, v. 47, p. 851-871.