پهنه‌بندی عنصری و ژئوشیمی کانسنگ سولفیدی در کانسار روی و سرب تیپ رسوبی-بروندمی آب‌باغ، جنوب‌شرقی کمربند فلززایی ملایر-اصفهان

نوع مقاله : علمی -پژوهشی

نویسندگان

1 گروه زمین‌شناسی اقتصادی، دانشکده علوم پایه، دانشگاه تربیت مدرس، تهران، ایران

2 دانشکده زمین‌شناسی، پردیس علوم، دانشگاه تهران، تهران، ایران

3 بخش زمین‌شناسی دریایی، سازمان زمین‌شناسی اسپانیا، مادرید، اسپانیا

چکیده

کانسار روی-سرب تیپ رسوبی-بروندمی آب­باغ در بخش میانی پهنه سنندج-سیرجان و منتهی­الیه جنوب شرقی کمربند فلززایی ملایر-اصفهان واقع شده است. کانه­زایی روی و سرب در این کانسار در دو افق کانه­دار در سنگ­های آواری-کربناتی ژوراسیک بالایی-کرتاسه تحتانی و کربناتی کرتاسه زیرین به­صورت چینه­سان و چینه­کران تشکیل شده است. پهنه­بندی شیمیایی افقی و عمودی در کانسنگ سولفیدی افق 1 کانسار آب­باغ به خوبی قابل مشاهده است؛ به گونه­ای که افزایش نسبت Pb/Ag از پایین به بالا و نسبت­های  Pb/(Zn+Pb) و Cu/(Zn+Pb) از بالا به پایین در رخساره کانسنگ توده­ای و کاهش نسبت­های Zn/Al2O3 و S/Al2O3 و عنصر مس و افزایش عنصر باریم از محل گسل همزمان با رسوبگذاری به سمت­های حاشیه­ای (به­صورت افقی) کانسار مشاهده می­شود. در کانسنگ سولفیدی افق 1 کانسار آب­باغ همبستگی قوی مثبت بین عناصر کادمیوم و کبالت با روی و نقره با سرب مشاهده می­شود. عناصر نادر خاکی در کانسنگ سولفیدی دارای تمرکز پایینی است اما با این وجود، محتوای عناصر نادر خاکی در رخساره کانسنگ لایه­ای به نسبت رخساره­های توده­ای و رگه-رگچه­ای بیشتر می­باشد. محتوای آهن و کادمیوم اسفالریت از حاشیه به سمت مرکز افزایش پیدا می­کند که نشان­دهنده کاهش حرارت سیال کانه­ساز به مروز زمان است. خصوصیات ژئوشیمیایی کانی­های­ اسفالریت و پیریت نشان دهنده ته­نشست آن­ها در محیط بی­هوازی می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Elemental zonation and geochemistry of sulphide ore of the Ab-Bagh sedimentary-exhalative Zn-Pb deposit, southeastern margin of the Malayer-Esfahan metallogenic belt

نویسندگان [English]

  • Mehdi Movahednia 1
  • Ebrahim Rastad 1
  • Abdorahman Rajabi 2
  • Francisco Javier González Sanz 3
1 Department of Economic Geology, Faculty of Basic Sciences,Tarbiat Modares University, Tehran, Iran
2 School of Geology, College of Science, University of Tehran, Tehran, Iran
3 Marine Geology Division, Geological Survey of Spain (IGME), Madrid, Spain
چکیده [English]

IntroductionThe Ab-Bagh Zn-Pb deposit is located in the southeastern part of the Malayer-Esfahan metallogenic belt (MEMB). A large number of Zn-Pb deposits in the MEMB (approximately 170 deposits), are hosted by early Cretaceous carbonate rocks, and few of them are hosted by Jurassic detrital and organic matter-rich sedimentary rocks. In this study, we present the results obtained from fieldwork, ore and host rock petrographic studies, main oxides, trace and rare earth elements analysis and chemistry of sulfide minerals.Method and MaterialThis study focused on the geochemistry of both of the two ore-bearing horizons that constitute the Ab-Bagh deposit (12 samples). Trace and rare earth elements analysis were conducted using an Agilent 7500ce ICP-MS instrument, Zn and Pb were analyzed via ICP-OES and main oxides were determined via XRF in the IGME central laboratory, Barcelona, Spain. To determine chemistry of sulfide minerals, four polished thin sections were studied using EPMA in IGME central laboratory.Result and discussionOre-bearing horizons of the Ab-Bagh deposit are hosted in the late Jurassic-early Cretaceous clastic-carbonate sequence. The northeast-trending, steeply southeast-dipping rocks have been subdivided into five units. Based on position, there are two zinc- and lead-bearing stratigraphic ore horizons. Ore horizon 1 is hosted by late Jurassic-early Cretaceous black shale and siltstone. The wedge-shaped ore body is located close to a synsedimentary fault. Petrographic studies indicate that mineralization comprises three sulfide ore facies: stockwork, bedded and massive ore facies. Ore horizon 2 occurs in early Cretaceous carbonates and comprises of massive ore facies that are concordant with host rock layering; it is also underlain by stockwork facies. Textures include framboidal, laminated, breccia, replacement, massive and vein-veinlet.Due to alternating pulses of hydrothermal fluid (zone refining process), temperature and redox condition changes, SEDEX deposits are chemically zoned. Based on geochemical studies, metal zoning patterns are well developed in the Ab-bagh SEDEX type Zn-Pb deposit. Both vertical and horizontal zonation is present in this deposit. In SEDEX deposits, moving outward from the stockwork facies, ore bearing horizons display decreasing Zn/Ba, Zn/Mn, Zn/Fe, Pb/Zn, Pb/Fe, Pb/Ag, and Cu/ZnþPb ratios, reflecting the oxidation control on mineralogy and the temperature dependent solubility of the base metals.Vertical and horizontal chemical zonation is well developed in ore horizon 1 of Ab-Bagh deposit, in a way that Pb/Ag increase from base to top and Cu/(Zn+Pb) and Pb/(Zn+Pb) increase from top to base in massive ore facies. Also, horizontally, Zn/Al2O3, S/Al2O3 and Cu decrease and Ba increases from massive to bedded ore facies. There is a significant positive correlation between Cd/Zn, Co/Zn and Ag/Pb in sulphide ores from ore horizon 1. REE content of massive sulphide ore is very low, however, REE content of bedded ore is more than the massive and stockwork ore facies. Fe and Cd content of sphalerite increases from margins to center, which reflects drop in temperature of ore-forming fluid over time. Also geochemical features of sphalerite and pyrite suggest that they are formed in anoxic environment.ConclusionThe Ab-Bagh Zn-Pb deposit is hosted by Late Jurassic-Early Cretaceous black shales and Early Cretaceous limestone. The deposit consists of two horizons of Zn-Pb sulfide and oxide lenses situated at the different stratigraphic levels, each with an associated stringer vein zone. Vertical and horizontal chemical zonation is well developed in ore horizon 1 of Ab-Bagh deposit. Lateral zonation away from the center of fluid discharge is controlled mostly by zone refining in the vent complex and is typically accompanied by a decrease in the thickness of the stratiform body.

کلیدواژه‌ها [English]

  • Ore facies
  • Geochemistry
  • SEDEX
  • Zn-Pb deposit
  • Elemental zonation
  1. آقانباتی، ع.، 1383. زمین‌شناسی ایران. وزارت صنایع و معادن، سازمان زمین‌شناسی و اکتشافات مواد معدنی کشور، 586ص.
  2. -موحدنیا، م.، 1394. رخساره‌های کانسنگی، ژئوشیمی و تیپ کانه‌زایی روی-سرب (باریم) در کانسار آب‌باغ (کهرویه)، جنوب شهرضا، پهنه سنندج-سیرجان". پایان‌نامه کارشناسی ارشد، دانشگاه تربیت مدرس، تهران.
  3. -موحدنیا، م.، راستاد، الف. و رجبی، ع.، 1393. بررسی ویژگی‌های ژئوشیمیایی عناصر فرعی و کمیاب کانی‌های اسفالریت و گالن در کانسار روی و سرب آب‌باغ، جنوب شهرضا، پهنه سنندج-سیرجان، هجدهمین همایش انجمن زمین‌شناسی ایران، تهران.
  4.  
  5.  
  6. -Ahmadi Khalaji, A., Esmaeily, D., Valizadeh, M.V. and Rahimpour, H., 2007. Petrology and geochemistry of the granitoid complex of Boroujerd, Sanandaj–Sirjan zone, western Iran: Journal of Asian Earth Sciences, v. 29. p. 859-877.
  7. -Alavi, M., 1991. Tectonic map of the Middle East: Tehran. Geological Survey of Iran, scale 1:5,000,000.
  8. -Azizi, H. and Jahangiri, A., 2008. Cretaceous subduction-related volcanism in the northern Sanandaj-Sirjan Zone, Iran, J. Geodyn. v. 45, p. 178-190.
  9. -Azizi, H. and Moinevaziri, H., 2009. Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran, J. Geodyn. v. 47, p. 167-179.
  10. -Benedetto, F.D., Bernardini, G.P., Costagliola, P., Plant, D. and Vaughan, D.J., 2005. Compositional zoning in sphalerite crystals, American mineralogist, v. 90, p. 1384-1392.
  11. -Boynton, W.V., 1984. Cosmochemistry of the rare earth elements; meteorite studies, In: Rare earth element geochemistry, Henderson, P. (Editors), Elsevier Science Publishing Corporation, Amsterdam, p. 63-114.
  12. -Brill, B.A., 1989. Trace elements content and partitioning of elements in ore minerals from the CSA Cu-Pb-Zn deposit, Australia, and implications for ore genesis, Canadian mineralogist, v. 27(2), p. 263-274.
  13. -Brumsack, H.J., 2006. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation, Palaeogeogr, Palaeo-climatol, Palaeoecol, v. 232, p. 344-361.
  14. -Canet, C., Alfonso, P., Melgarejo, J.C. and Belyatsky, B.V., 2004. Geochemical evidences of sedimentary-exhalative origin of the shale-hosted PGE–Ag–Au–Zn–Cu occurrences of the Prades Mountains (Catalonia, Spain): trace-element abundances and Sm–Nd isotopes, Journal of Geochemical exploration, v. 82, p. 17-33.
  15. -Cooke, D.R., Bull, S.W., Large, R.R. and McGoldrick, P.J., 2000. The importance of oxidized brines for the formation of Australian Proterozoic stratiform sediment-hosted Pb-Zn (Sedex) deposits. Economic Geology, v. 95. p. 1-18.
  16. -Cullers, R.L. and Graf, J., 1984. Rare Earth Element in Igneous Rocks of the Continental Crust: Intermediate and Silicic Rocks, Ore Petrogenesis. In: Henderson, P., Ed., Rare Earth Geochemistry, Elsevier, Amsterdam, p. 275-316.
  17. -Danyushevskiy, L., 2011. Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study, Ore Geology Reviews, v. 39, p. 188-217
  18. -Esna-Ashari, A., Tiepolo, M., Valizadeh, M.V., Hassanzadeh, J. and Sepahi, A.A., 2012. Geochemistry and zircon U–Pb geochronology of Aligoodarz granitoid complex, Sanandaj- Sirjan Zone, Iran: Journal of Asian Earth Sciences, v. 43, p. 11-22.
  19. -Goodfellow, W.D. and Lydon, J.W., 2007. Sedimentary-exhalative (Sedex) deposits, In: Goodfellow, W.D., (eds.), Mineral deposits of Canada: A synthesis of major deposit types, district metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Special Publication, v. 5, p. 163-183
  20. -Goodfellow, W.D., 2004. Geology, genesis and exploration of SEDEX deposits, with emphasis on the Selwyn basin, Canada, in Deb, M., Goodfellow, W.D., (eds.), Sediment-hosted lead-zinc sulphide deposits: Attributes and models of some major deposits of India, Australia and Canada. Delhi, India, Narosa Publishing House, p. 24-99.
  21. -Hawley, J.E. and Nichol, I., 1961. Trace elements in pyrite, prrhotite ans chalcopyrite of different ores, Economic geology, v. 56(3), p. 467-487.
  22. -Huerta-Diaz, M.A. and Morse, J.W., 1992. Pyritization of trace metals in anoxic marine sediments, Geochimica and Cosmochimca Acta, v. 56, p. 2681-2702.
  23. -Liu, Y., Cao, L. and Li, Z., 1984. Elements geochemistry, Science Press, Beijig, 452 p.
  24. -Lydon, J.W., 1996. Sedimentary exhalative sulphides (SEDEX), in Eckstrand, O.R., Sinclair, W.D., Thorpe, R.I., (eds.), Geology of Canadian Mineral Deposit Types, Geology of Canada, No. 8, Geological Survey of Canada (also Geological Society of America, The Geology of North America P-1), p. 130-152.
  25. -Lydon, W.J., 2004. Genetic models for Sullivan and other SEDEX deposits, in Deb, M. Goodfellow, W.D., (eds.), Sediment-hosted lead-zinc sulphide deposits: Attributes and models of some major deposits of India, Australia and Canada, Narosa publishing house, Delhi, India, p. 149-190.
  26. -Mahmoudi, S., Corfu, F., Masoudi, F., Mehrabi, B. and Mohajjel, M., 2011. U–Pb dating and emplacement history of granitoid plutons in the northern Sanandaj–Sirjan Zone, Iran: Journal of Asian Earth Sciences, v. 41, p. 238-249.
  27. -Mohajjel, M. and Fergusson, C.L., 2014. Jurassic to Cenozoic tectonic of the Zagros orogeny in northwestern Iran, J. international geology review, v. 56, p. 263-287.
  28. -Mohajjel, M., Fergusson, C.L. and Sahandi, M.R., 2003. Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan Zone, western Iran, J. Asian Earth Science. v. 21, p. 397-412.
  29. -Momenzadeh, M., 1976. Stratabound lead–zinc ores in the lower Cretaceous and Jurassic sediments in the Malayer–Esfahan district (west Central Iran): lithology, metal content, zonation and genesis [Unpublished Ph.D. thesis], Heidelberg, University of Heidelberg, 300 p.
  30. -Movahednia, M., Rastad, E., Rajabi, A. and Choulet, F., 2014. The Ab-Bagh Stratiform and Stratabound Zn-Pb Deposit, Sanandaj-Sirjan Zone, Iran, 13th SGA Biennial Meeting 2015, Proceedings, v. 5.
  31. -Palero-Fernandez, F.J. and Martin-Izard, A., 2005. Trace element contents in galena and sphalerite from ore deposits of the Alcudia Valley mineral field (Eastern Sierra Morena, Spain), Journal of Geochemical Exploration, v. 86, p. 1-25.
  32. -Pfaff, K., Koenig, A., Wenzel, T., Ridley, I., Hildebrandt, L.H., Leach, D.L. and Markl, G., 2011. Trace and minor element variations and sulfur isotopes in crystalline and colloform ZnS: Incorporation mechanisms and implications for their genesis, Chemical Geology, v. 286, p. 118-134.
  33. -Price, B.J., 1972. Minor elements in pyrites from the Smithers map area, British Columbia and exploration applications of minor element studies (Doctoral dissertation), Vancouver: Columbia University.
  34. -Rajabi, A., Rastad, E. and Canet, C., 2012. Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: geotectonic setting and data integration for future mineral exploration, International Geology Review, v. 54, p. 1649-1672.
  35. -Rasmussen, B. and Buick, R., 1999. Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca.3250–2750 Ma sandstones from the Pilbara Craton, Australia. Geology, v. 27, p. 115-118.
  36. -Rouxel, O.J., Bekker, A. and Edwards, K.J., 2005. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state, Science, v. 307, p. 1088-1091.
  37. -Schwartz, M., 2000. Cadmium in zinc deposits: economic geology of a polluting element, International Geology Reviews. v. 42, p. 445-469
  38. -Swanner, E.D., Planavsky, N.J., Lalonde, S.V., Robbins, L.J., Bekker, A., Rouxel, O.J., Saito, M.A., Kappler, A., Mojzsis, S.J. and Konhauser, K.O., 2014. Cobalt and marine redox evolution, Earth and Planetary Science Letters, v. 390, p. 253-263.
  39. -Tolcin, A.C., 2008. Cadmium, In: Metals and minerals, U.S. Geological Survey Minerals Yearbook 2007 I, p. 15.1-15.9.
  40. -Tu, G., 1984. The geochemistry of stratabound deposit, China, Beijing,: Geology Press, p. 13-54.
  41. -Vaughan, D.J. and Craig, J.R., 1997. Sulfide mineral stabilities, morphologies, and intergrowth textures, in Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits—third edition: New York, John Wiley, p. 367-434.
  42. -Wilkinson, J.J., 2014. Sediment-hosted zinc-lead mineralization: processes and perspectives, In: Treatise on Geochemistry (2nd ed.), Elsevier (2014), p. 219-248
  43. -Ye, Lin., Cook, N., Cristiana, L.C., Yulong, Y., Zhang, Q., Tiegeng, L., Wei, G., Yulong, Y. and Danyushevskiy, L., 2011. Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study, Ore Geology Reviews, v. 39, p. 188-217
  44. -Zhang, Q., 1987. Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb–Zn ore deposits, Chinese Journal of Geochemistry, v. 6, p. 177-190.