-افشونی، ز.، اسماعیلی، د. و اسدی هارونی، ه.، 1392. مطالعه ایزوتوپهای پایدارS ،H ،O در زونهای دگرسانی فیلیک و پتاسیک- فیلیک کانسار مس-مولیبدن پورفیری کهنگ (شمالشرق اصفهان)، زمینشناسی کاربردی پیشرفته، شماره 7، ص 64 تا 73.
-باباخانی، ع.ر.، لسکویه، ج.ل. و ریو، ر.، 1369. شرح نقشه زمینشناسی چهارگوش اهر، مقیاس 1:250000 سازمان زمینشناسی کشور.
-تقیپور، ن. و درانی، م.، 1392. زمینشیمی ایزوتوپهای پایدار گوگرد و اکسیژن کانیهای سولفیدی و سولفاتی کانسار مس پورفیری پرکام شهربابک، استان کرمان، مجله زمینشناسی کاربردی پیشرفته، شماره 8، ص 61 تا 71.
-حسنپور، ش.، 1389. متالوژنی و کانهزایی کانسارهای مس-طلا در زون ماگمایی ارسباران، آذربایجان شرقی، شمالغرب ایران، رساله دکتری زمینشناسی اقتصادی، دانشکده علومزمین، دانشگاه شهید بهشتی.
-شرکت ملی صنایع مس ایران، 1388. گزارش و نقشه زمینشناسی منتشر نشده ناحیه هفتچشمه؛ مقیاس 1:1000.
-عادلی، ز.، 1392. کانیشناسی، ژئوشیمی، زایش و مدلسازی کانسار هفتچشمه، شرق آذربایجان، ایران، رساله دکتری زمینشناسی اقتصادی، دانشگاه آزاد اسلامی تهران، شعبه علوم و تحقیقات.
-ظاهریعبدهوند، ن.، 1399. تحولات ماگمایی و تشکیل سیالات کانهدار کانسار Cu-Mo پورفیری هفتچشمه: با شواهدی از شیمی کانیهای بیوتیت و آمفیبول، ایزوتوپهای پایدار و ناپایدار، رساله دکتری زمینشناسی اقتصادی، دانشکده علومزمین، دانشگاه شهید بهشتی.
-محمددوست، ه.، قادری، م. و حسنزاده، ج.، 1397. تغییرات ایزوتوپی گوگرد کانیهای سولفیدی در سامانههای پورفیری خوشه میدوک، کمان ماگمایی سنوزوییک کرمان، جنوب خاور ایران، فصلنامه علوم-زمین، بهار 97 ، سال 27 م، شماره 107، ص 3-13.
-معانی جو، م.، مستقیمی، م.، عبدالهی ریسه، م. و سپاهی گرو، ع.ا.، 1391. مطالعات سیستماتیک ایزوتوپهای پایدار گوگرد و میانبارهای سیال گروه-های رگچههای مختلف کانسار مس پورفیری سرچشمه، براساس دادههای جدید، مجله زمین-شناسی اقتصادی، شماره 2، جلد 4، ص 217-239.
-Aguillon–Robles, A., Calmus, T., Benoit, M., Bellon, H., Maury, R.C., Cotten, J., Bourgois, J. and Michaud, F., 2001. Late Miocene adakites and Nb–enriched basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise subduction below southern Baja California?: Geology, v. 29, p. 531-534.
-Allegre, C.J., 2008. Isotope Geology, first ed: Cambridge University Press, New York.
-Bissig, T., Clark, A.H., Lee, J.K.W. and Quadt, A.V., 2003. Petrogenetic and metallogenetic responses to Miocene slab flattening: new constraints from the El Indio-Pascua Au– Ag–Cu belt: Mineralum Deposita, v. 38, p. 844-862.
-Calagari, A.A., 2003. Stable isotope (S, O, H and C) studies of the phyllic and potassic–phyllic alteration zones of the porphyry copper deposit at Sungun, East Azarbaidjan, Iran; Journal of Asian Earth Scinces, v. 21-7, p. 767-780.
-Chiaradia, M., Ulianov, A., Kouzmanov, K. and Beate, B., 2012. Why large porphyry Cu deposits like high Sr/Y magmas?. Scientific Reports, v. 2, 685 p.
-Craig, H., 1961. Isotopic variations in meteoric waters: Science, v. 133, p. 1702-1703.
-De Paolo, D.J. and Wasserburg, G.J., 1976. Nd isotopic variations and petrogenetic models: Geophysical Research Letters, v. 3, p. 249-252.
-Doe, B.R. and Zartman, R.E., 1979. Plumbotectonics I, the Phanerozoic: In: Barnes, H.L, Geochemistry of Hydrothermal Ore Deposits. Wiley, New York, p. 22-70.
-Dosso, L., Bougault, H. and Joron, J.L., 1993. Geochemical morphology of the North Mid Atlantic Ridge, 108–248N: Trace element isotope complementarity: Earth and Planetary Science Letters, v. 120, p. 443-462.
-Giggenbach, W.F., 1992. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin: Earth and Planetary Science Letters, v. 113, p. 495-510.
-Gustafson, L.B. and Hunt, J.P., 1975. The porphyry copper deposit at El Salvador, Chile: Economic Geology, v. 70, p. 857-912.
-Haschke, M., Ahmadian, J., Murata, M. and McDonald, I., 2010. Copper mineralization prevented by arc–root delamination during Alpine– Himalayan collision in Central Iran: Economic Geology, v. 105, p. 855-865.
-Hassanpour, S., 2017. The Sungun porphyry magma resource and the 120,000-year difference in age between the main stock and the first dike: New evidence from 87Sr/86Sr, 143Nd/144Nd and Pb, SHRIMP U–Pb zircon dating in NW Iran: Iranian Journal of Earth Sciences, v. 9, p. 94-104.
-Hassanpour, S. and Moazzen, M., 2017. Geochronological Constraints on the Haftcheshmeh Porphyry Cu-Mo-Au Ore Deposit, Central Qaradagh Batholith, Arasbaran Metallogenic Belt, Northwest Iran: Acta Geologica Sinica, v. 91(6), p. 2109-2125.
-Hassanpour, S., Alirezaei, S., Selby, D. and Sergeev, S., 2015. SHRIMP zircon U–Pb and biotite and hornblende Ar–Ar geochronology of Sungun, Haftcheshmeh, Kighal, and Niaz porphyry Cu–Mo systems, evidence for an early Miocene porphyry-style mineralization in northwest Iran: International Journal of Earth Sciences, v. 104, p. 45-59.
-Harris, A., Golding, S. and White, N., 2005. Bajo de la Alumbrera Copper-Gold Deposit: Stable Isotope Evidence for a Porphyry-Related Hydrothermal System Dominated by Magmatic Aqueous Fluids: Economic Geology, v. 100, p. 863-886.
-Hart, S.R., 1984. The DUPAL anomaly: a large-scale isotopic anomaly in the southern hemisphere: Nature, v. 306, p. 753-756.
-Hawkesworth, C.J. and Kemp, A.I.S., 2006. Evolution of the continental crust: Nature, v. 443, p. 811-817.
-Hedenquist, J.W. and Lowenstern, J.B., 1994. The role of magmas in the formation of hydrothermal ore deposits: Nature, v. 370, p. 519-527.
-Hou, Z.Q., Zhang, H., Pan, X. and Yang, Z., 2011. Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust: examples from the eastern Tethyan metallogenic domain: Ore Geolgy Review, v. 39, p. 21-45.
-Khashgerel, B.E., Kavalieris, I. and Hayashi, K., 2008. Mineralogy, textures, and whole-rock geochemistry of advanced argillic alteration: Hugo Dummett porphyry Cu-Au deposit, Oyu Tolgoi mineral district: Mongolia. Mineralum Deposita, v. 43, p. 913-932.
-Li, Y.B. and Liu, J.M., 2006. Calculation of sulfur isotope fractionation in sulfides: Geochimica et Cosmochimica Acta, v. 70, p. 1789-1795.
-Mckibben, M.A. and Eldrifce, C.S., 1990. Radical sulfur isotope zonation of pyrite accompanying boiling and epitherinal gold deposition: A SHRIMP study of the Valles Caldera, New Mexico: Economic. Geology, v. 85, p. 1917-1925.
-Mahoney, J.J., Frei, R., Tejada, M.L.G., Mo, X.X., Leat, P.T. and Nägler, T.F., 1998. Tracing the Indian Ocean mantle domain through time: isotopic results from old West Indian, East Tethyan, and South Pacific seafloor: Journal of Petrology, v. 39, p. 1285-1306.
-Meinert, L.D., Hedenquist, J.W., Satohi, H. and Matsuhisa, Y., 2003. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids: Economic Geology, v. 98, p. 147-156.
-Miller, C.F., Schuster, R., Klötzli, U., Frank, W. and Purtscheller, F., 1999. Post–collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr–Nd–Pb–O isotopic constraints for mantle source characteristics and petrogenesis: Journal of Petrology, v. 40, p. 1399-1424.
-Moritz, R., Rezeau, R., Ovtcharova, M., Tayan, M., Melkonyan, R., Hovakimyan, S., Ramazanov, V., Selby, D., Ulianov, A., Chiaradia, M. and Putlitz, B., 2016. Long-lived, stationary magmatism and pulsed porphyry systems during Tethyan subduction to post-collision evolution in the southernmost Lesser Caucasus, Armenia and Nakhitchevan: Gondwana Research, v. 37, p. 465-503.
-Moritz, R., Mederer, J., Ovtcharova, M., Spikings, R., Selby, D., Melkonyan, R. and Hovakimyan, S., 2013. Jurassic to Tertiary Metallogenic Evolution of the Southernmost Lesser Caucasus, Tethys Belt: Mineral Deposit Research for a High-tech World, 12th SGA Biennial Meeting, Uppsala, Sweden, v. 3, p. 1443-1450.
-Ohmoto, H. and Rye, R.O., 1979. Isotopes of sulfur and carbon, in Barnes H. L. Geochemistry of hydrothermal deposits, 2th edition, Weily Interscience, New York, p. 509-567.
-O’Neil, J.R. and Taylor, H.P., 1969. Oxygen isotope equilibrium between muscovite and water: Journal of Geophysical Research, v. 74, p. 1414-1437.
-Parsapoor, A., Khalili, M., Tepley, F. and Maghami, M., 2015. Mineral chemistry and isotopic composition of magmatic, re-equilibrated and hydrothermal biotites from Darreh-Zar porphyry copper deposit, Kerman (southeast of Iran): Ore Geology Reviews, v. 66, p. 200-218.
-Pettke, T., Felix Oberli, F. and Heinrich, C.A., 2010. The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions: Earth and Planetary Science Letters, v. 296, p. 267-277.
-Richards, J.P., 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins: Ore Geology, Reviwes, v. 40-1, p. 1-26.
-Savin, S.M. and Epstein, S., 1970. The oxygen and hydrogen isotope geochemistry of clay minerals: Geochimica et Cosmochimica Acta, v. 34, p. 25-42.
-Shafiei, B., 2010. Lead isotope signatures of the igneous rocks and porphyry copper deposits from the Kerman Cenozoic magmatic arc (SE Iran), and their magmatic– metallogenetic implications: Ore Geology Reviwes, v. 38, p. 27-36.
-Shmulovich, K.I., Landwehr, D., Simon, K. and Heinrich, W., 1999. Stable isotope fractionation between liquid and vapor in water-salt systems up to 600 0C: Chemical Geology, v. 157, p. 343-354.
-Sillitoe, R.H., 2010. Porphyry copper systems: Economic Geology, v. 105, p. 341-363.
-Stacey, J.S. and Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two stage model: Earth and Planetary Science Letters, v. 26, p. 207-221.
-Sun, W., Huang, R.F., Li, H., Hua, Y.B., Zhang, C., Sun, S.J., Zhang, L.P., Ding, X., Li, C.Y., Zartmana, R.E. and Ling, M.X., 2015. Porphyry deposits and oxidized magmas: Ore Geology Reviews v. 65, p. 97-131.
-Suzuoki, T. and Epstein, S., 1976. Hydrogen isotope fractionation between OH-bearing minerals and water: Geochimica et Cosmochimica Acta, v. 40, p. 1229-1240.
-Taylor, H.P., 1974. The application of oxygen and hydrothermal isotope studies to problems of hydrothermal alteration and ore deposition: Economic Geology, v. 69, p. 843-883.
-Taylor, B.E., 1992. Degassing of H2O from rhyolite magma during eruption and shallow intrusion, and the isotopic composition of magmatic water in hydrothermal systems, in Hedenquist, J.W., ed., Magmatic contributions to hydrothermal systems: Geological Survey of Japan Report, v. 279, p. 190-195.
-Taylor, B.E., 1988. Degassing of rhyolitic magmas: Hydrogen isotope evidence and implications for magmatic-hydrothermal ore deposits: Canadian Institute of Mining and Mineralogy Special, v. 39, p. 33-49.
-Todt, W., Cliff, R.A., Hanser, A. and Hofmann, A.W., 1984. 202Pb+205Pb spike for lead isotopic analysis: Terra Cognita, v. 4, p. 209-221.
-Zaheri-Abdehvand, N., Tarantola, A., Rasa, I., Hassanpour, S. and Peiffert, C., 2020. Metal content and P-T evolution of CO2-bearing ore-forming fluids of the Haftcheshmeh Cu-Mo porphyry deposit, NW Iran: Journal of Asian Earth scinces, v. 190, p. 104-116.
-Zaheri-Abdehvand, N., Rasa, I., Hassanpour, S. and Tarantola, A., 2018. CO2-Rich Magmatic-Hydrothermal fluid controlling Cu-Mo Mineralization at Haftcheshmeh Porphyry Deposit, NW Iran: TRIGGER International Conference, School of Geology, University of Tehran. Iran, November 12-16.
-Zhang, C., Ma, C., Holtz, F., Koepke, J., Wolff, P.E. and Berndt, J., 2013. Mineralogical and geochemical constraints on contribution of magma mixing and fractional crystallization to high–Mg adakite–like diorites in eastern Dabie orogen, East China: Lithos, v. 172, p. 118-138.
-Zheng, Y.F., 1993. Calculation of oxygen isotope fractionation in hydroxyl bearing silicates: Earth and Planetary Science Letters, v. 120, p. 247-263.
-Zhu, D.C., Zhao, Z.D., Pan, G.T., Lee, H.Y., Kang, Z.Q., Liao, Z.L., Wang, L.Q., Li, G.M., Dong, G.C. and Liu, B., 2009. Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: products of slab melting and subsequent melt peridotite interaction?: Journal of Asian Earth Sciences, v. 34, p. 298-309.
-Zindler, A. and Hart, S., 1986. Chemical geodynamics: Annual review of earth and planetary sciences, v. 14, p. 493-571.