برآورد شرایط فیزیکوشیمیایی تشکیل و مقایسه شیمی کانی بیوتیت در سنگ‌های آذرین جنوب شهرستان گرمی، شمال غرب ایران

نوع مقاله : علمی -پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم، دانشگاه محقق اردبیلی، اردبیل، ایران

2 گروه زمین‌شناسی، دانشکده علوم، دانشگاه لرستان، خرم‌آباد، ایران

چکیده

شمال غرب ایران به خصوص حوزه تالش از پهنه‌های مهم فعالیت ماگمایی آلکالن شوشونیتی در دوران سنوزوئیک می‌باشد. توده‌های گابرویی با سن ائوسن بالایی– الیگوسن در جنوب شهر گرمی به­‌عنوان بخشی از حوزه تالش، در بازالت‌های آلکالن ائوسن نفوذ کرده‌اند. بازالت‌های آلکالن بافت هیالومیکرولیتک پورفیری و گلومروپورفیری دارای ترکیب پلاژیوکلاز و کلینوپیروکسن با مقادیر کمتر کانی‌های الیوین، کانی‌های تیره، میکای سیاه، آمفیبول و آلکالی فلدسپار می­باشند و توده‌های گابرویی دارای بافت گرانولار و حاوی کانی‌های پیروکسن، پلاژیوکلاز، میکای قهوه‌ای و آمفیبول قهوه‌ای± آلکالی فلدسپار می‌باشند. ترکیب سنگ کل تمام این رخنمون­ها آلکالن شوشونیتی می­باشد. میکاهای سنگ‌های مورد مطالعه در جنوب گرمی براساس رده‏بندی شیمیایی با Fe#>0.33 ترکیب بیوتیتی در حد فاصل بین دو قطب سیدروفیلیت و استونیت دارند که با توجه به شواهد پتروگرافی و ترکیب شیمیایی، همزیست با آمفیبول می­باشند. ترکیب شیمیایی این بیوتیت‏ها نشانگر ماهیت آلکالن و منیزیم دار ماگمای میزبان بوده و با توجه به مقادیر AlVI<1 به‌صورت اولیه از ماگمای اولیه تبلور یافته‌اند. در همه نمونه‌های مورد مطالعه مقدار Mg# از 53 تا 67 درصد، مقدار AlTotalاز24/2 تا 58/2 و Fe# از 33/0 تا 47/0 متغیر است. حضور Fe3+در ساختار کانی بیوتیت از 73/1 تا 23/2 نشانگر مقادیر فوگاسیته بالا با مقدار 15-10 تا 17-10 بار برای گابروهای غفار کندی و بین 13-10 تا 15-10 برای گابرو و بازالت‌های ماراللو با بافر هماتیت و مگنتیت می‌باشد. بیوتیت‌های مورد مطالعه به لحاظ شیمیایی مشابه نمونه‌های بیوتیتی سنگ‌های تیپ رومن و سنگ‌های پتاسیک مرند بوده و نشانگر وابستگی ماگمای تشکیل دهنده به محیط فرورانشی است.

کلیدواژه‌ها


عنوان مقاله [English]

Physico-chemical estimation of the formation and comparison of chemistry of biotite mineralization in igneous rocks south of Germi, northwest of Iran

نویسندگان [English]

  • gholamreza ahmadzadeh 1
  • Mohammad Mobasher Germi 2
  • Ali Lotfibakhsh 1
1 University of Mohaghegh Ardabili
2 university of Lorestan
چکیده [English]

abstract Northwest of Iran, especially Talesh zone, is one of the important Alkaline and Shoshonite magmatic activity area in the Cenozoic. Eocene - Oligocene Gabbroic rocks in the south of the city of Germi as part of the Talesh zone have penetrated the Eocene alkaline basalts. Alkaline basalts with hyalomicrolitic porphyrytic and glomerulophorphyric texture are composed of plagioclase and clinopyroxene with lower amounts of olivine minerals, dark minerals, black mica, amphibole and alkali feldspar. Gabbro masses have granular texture containing pyroxene minerals, plagioclase, black mica, amphibole and ± alkaline feldspar. Composition of all these rock outcrops are alkaline to shoshonite. The studied micaceous of south Germi, based on the chemical classification with Fe #> 0.33, have biotite composition at the interface between the two poles of sydrophyllite and stonitis, which, according to the evidence of petrography and chemical composition, coexist with amphibole. The chemical composition of these biotite is indicative of the nature of alkaline and magnesium host magma and have been crystallized from primary magma with respect to AlVI

کلیدواژه‌ها [English]

  • mineral chemistry
  • Biotite
  • Basalt
  • Gabbro
  • south of Germi
  1. -باباخانی، آ.،ر. و خان ناظر، ن.، 1377. گزارش نقشه زمین شناسی 1:100000 لاهرود، شماره 5567، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
  2. -عباسی، س.، 1384. گزارش نقشه زمین‌شناسی 1:100000 رضی، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
  3. -مبشرگرمی، م.، 1392. بررسی پترولوژی، پتروگرافی و ژئوشیمی بازالت‌های پشتاسر در جنوب شهرستان گرمی (شمال استان اردبیل، پایان‌نامه کارشناسی‌ارشد، دانشگاه تبریز.
  4. -مبشرگرمی، م.، 1397. پترولوژی و مطالعات ایزوتوپی بازالت‌های برزند و مقایسه با بازالت‌های پشتاسر در جنوب غرب شهرستان گرمی، رساله دکتری، دانشگاه لرستان.
  5. -مبشرگرمی، م.، اکبری، ز. و جمشیدی بدر، م. 1394. ژئوشیمی، پتروژنز و محیط تکتونیکی گابروهای جنوب غرب شهرستان گرمی، مجله پترولوژی، شماره6(24)، ص 65-86.
  6.  
  7.  
  8. -Abdel-Rahman, A., 1994. Nature of biotites from alkaline, calc-alkaline and peraluminous Magmas, Journal of Petrology, v. 35(2), p. 525-541.
  9. -Aftabi, A. and Atapour, H., 2000. Regional aspects of shoshonitic volcanism in Iran, Episodes, v. 23(2), p.119-125.
  10. -Aghazadeh, M., Castro, A., Badrzadeh, Z. and Vogt, K., 2011. Post-collisional polycyclic plutonism from the Zagros hinterland, The Shaivar-Dagh plutonic complex Alborz belt, Iran, Geological Magazine, v. 148, p. 980-1008.
  11. -Aghazadeh, M., Castro, A., Omrani, N.R., Emami, M.H., Moinevaziri, H. and Badrzadeh, Z., 2010. The gabbro (shoshonitic)-monzonite-granodiorite association of Khankandi pluton, Alborz mountains, NW Iran, Journal of Asian Earth Sciences, v. 38, p. 199-219.
  12. -Ahmadzadeh, G., Jahangiri, A., Lentz, B.D. and Mojtahedi, M., 2010. Petrogenesis of Plio-Quaternary post-collisional ultrapotassic volcanism in NW of Marand, NW Iran, Journal of Asian Earth Sciences, v. 39, p. 37–50.
  13. -Albuquerque, C.A.R., 1973. Geochemistry of biotites from granitic rocks, Northern Portugal.Geochimica et Cosmochimica Acta, v. 37, p. 1779-1802.
  14. -Anderson, J.L. and Smith, D.R., 1995. The effects of temperature and fO2 on the Al-in-hornblende barometer, American Mineralogist, v. 80, p. 549-559.
  15. -Beane, R.E., 1974. Biotite stability in the porphyry copper environment, Economic Geology, v. 69(2), p. 241-256.
  16. -Berberian, F. and Berberian, M., 1981. Tectono-plutonic episodes in Iran, American Geophysical Union. Geodynamics Series, v. 3, p. 5-32.
  17. -Bol, L.C.G.M., Bos, A., Sauter, P.C.C. and Jansen, J.B.H., 1989. Barium-titanium-rich phlogopites in marbles from Rogaland, southwest Norway, American Mineralogist, v.74, p. 439-447.
  18. -Boomeri, M., Nakashima, K. and Lentz, D.R., 2010. The Sarcheshmeh porphyry copper deposit, Kerman, Iran: A mineralogical analysis of the igneous rocks and alteration zones including halogen element systematics related to Cu mineralization processes, Ore Geology Reviews, v. 38(4), p. 367-381.
  19. -Castro, A., Aghazadeh, M., Badrzadeh, Z. and Chichorro, M., 2013. Late Eocene-Oligocene post-collisional monzonitic intrusions from the Alborz magmatic belt, NW Iran, an example of monzonite magma generation from a metasomatized mantle source, Lithos, v. 180-181, p. 109-127.
  20. -Chivas, A.R., 1981. Geochemical evidence for magmatic fluids in porphyry copper mineralization, Part I. mafic silicates from the Koloula igneous complex, Contributions to Mineralogy and Petrology, v. 78(4), p. 389-403.
  21. -Deer, W.A., Howie, R.A. and Zussman, J., 1962. An Introduction to the rock forming minerals, Second Longman Editions, Longman, London, 696 p.
  22. -Deer, W.A., Howie, A. and Zussman, J., 1986. An interduction to the rock – forming minerals, 17th ed., Longman, 528 p.
  23. -Dewey, J.F., Hempton, M.R., Kidd, W.S.F., Saroglu, F. and Sengӧr, A.M.C., 1986. Shortening of continental lithosphere: the neotectonics of eastern Anatolia-a young collision zone. In: Collision zone tectonics (Eds. Coward, M. P. and Ries, A. C.) Special publication, v. 19, Geological Society, London, p. 3-36.
  24. -Dilek, Y., Imamverdiyev, N. and Altunkaynak, S., 2010. Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint, International Geology Review, v. 52, p. 536-578.
  25. -Dymek, R.F., 1983. Titanium, aluminum and interlayer cation substitutions in biotite from highgrade gneisses, west Greenland, American Mineralogist, v. 68 (9–10), p. 880–899.
  26. -Ernest, W.G., 2002. Paragenesis and thermobarometry of Ca-amphiboles in the Barcroft granodioritic pluton, central White Mountains, eastern California, American Mineralogists, v. 87, p. 478-490.
  27. -Farmer, G.L. and Boettcher, A.L., 1981. Petologic and crystal-chemical significance of some deep-seated phlogopites, American Mineralogist, v. 66, p. 1154-1163.
  28. -Feldstein, S.N., Lange, R.A., Vennemann, T. and O’Neil, J.R., 1996. Ferric–ferrous ratios, H2O contents and D/H ratios of phlogopite and biotite from lavas of different tectonic regimes, Contribution to Mineralogy and Petrology, v. 126, p. 51-66.
  29. -Forster, M.D., 1960. Interpretation of the composition of trioctahedral mica, United States, Geological Survey Professional, v. 354, p. 11-46.
  30. -Forster, H.J. and Tischendor, G.F., 1989. Reconstruction of the volatile characteristics of granitoidic magmas and hydrothermal solutions on the basis of dark micas: the Hercynian postkinematic granites and associated high-temperature mineralizations of the Erzgebirge (G.D.R), Chemie der Erade (Geochemistry), v. 49, p. 7-20.
  31. -Hendry, D., Chivas, A.R., Long, J. and Reed, S., 1985. Chemical differences between minerals from mineralizing and barren intrusions from some North American porphyry copper deposits, Contributions to Mineralogy and Petrology, v. 89(4), p. 317-329.
  32. -Hendry, D., Chivas, A.R., Reed, S. and Long, J., 1981. Geochemical evidence for magmatic fluids in porphyry copper mineralization, Part II. Ion-probe analysis of Cu contents of mafic minerals, Koloula igneous complex, Contributions to Mineralogy and Petrology, v. 78(4), p. 404-412.
  33. -Henry, D.J., Guidiotti, C.V. and Thomson, J.A., 2005. The Ti-saturation surface for low to medium pressure metapelitic biotite: Implications forGeothermometry and Ti-substitution Mechanisms, American Mineralogist, v. 90, p. 316-328.
  34. -Holm, P.M., 1982. Mineral chemistry of perpotassic lavas of the Vulsinian district, the Roman Province, Italy. Mineralogical Magazine, v. 46, p. 379-386.
  35. -Jacobs, D.C. and Parry, W.T., 1976. A comparison of the geochemistry of biotite from some basin and range stocks, Economic Geology, v. 71(6), p. 1029-1035.
  36. -Jacobs, D.C. and Parry, W.T., 1979. Geochemistry of biotite in the Santa Rita porphyry copper deposit, New Mexico, Economic Geology, v. 74(4), p. 860-887.
  37. -Jahangeri, A., Ahmadzadeh, G. and Lentenz, D., 2011. mineral chemistry of Phlogopitic minral in Plio-Quaternary potassium volcanic rocks, Northwest Marand, Iranian Journal of Crystallography and Mineralogy, v. 3, p. 399-412.
  38. -Johnson, C.L., Hudson, S.M., Rowe, H.D. and Efendiyeva, M.A., 2010. Geochemical constraints on the Palaeocene–Miocene evolution of eastern Azerbaijan, with implications for the South Caspian Basin and eastern Paratethys, Basin Research, v. 22, p. 733–750.
  39. -Lalonde, A.E. and Bernard, P., 1993. Composition and color of biotite from granites: two useful properties in the characterization of plutonic suites from the Hepburn internal zone of Wopmay orogen, Northwest Territories, Canadian Mineralogist, v. 31, p. 203-217.
  40. -Luhr, J.F., Carmichael, I.S.E. and Varekamp, J.C., 1984. The 1982 eruptions of El Chichon volcano, Chiapas, Mexico: mineralogy and petrology of the anhydrite-bearing pumices, Journal of Volcanology and Geothermal Research v. 23, p. 69–108.
  41. -Masson, F., Djamour, Y., Van Gorp, S., Chery, J., Tavakoli, F., Nankali, H. and Vernant, P., 2006. Extension in NW Iran driven by the motion of the south Caspian basin, Earth and Planetary Science Letters, v. 252, p. 180-188.
  42. -Nachit, H., Ibhi, A., Abia, E.H. and Ohoud, M.B., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites, Geomateriala (Mineralogy), Comptes Rendus, Geosciences, v. 337, p. 1415-1420.
  43. -Nachit, H., Razafimahefa, N., Stussi, J.M. and Carron, J.P., 1986. Composition chimique des biotites et typologie magmatique des granitoides”, Comptes Rendus Hebdomadaires de l’ Academie des Sciences, v. 301(11), p. 813–818.
  44. -Nockold, S.R., 1947. The relation between chemical composition and paragenesis in biotite micas of igneous rocks, American Mineralogist, v. 245(7), p. 401-420.
  45. -Otten, M.T., 1984. The origin of brown hornblende in the Artfjallet gabbro and dolerites, Contrib mineral petrol, v. 86, p. 189-99.
  46. -Raase, P., 1974. Al and Ti contents of hornblende, indicators of pressure and temperature of regional metamorphism, Contributions to mineralogy and Petrology v. 45, p. 231-236.
  47. -Rieder, M., Cavazzini, G., Yakonov, Y.D., Frank-Kanetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Müller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.L., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R., 1998. Nomenclature of the micas”, Canadian Mineralogist, v. 36(3), p. 905-912.
  48. -Robert, J.L., 1976. Titanium solubility in synthetic phlogopite solid solutions, Chemical Geology, v. 17, p. 213-227.
  49. -Ryabchikov, I.D., Kovalenko, V.I., Dikov, Y.P. and Vladykin, N.V., 1981. Titaniferous micas from the mantle: Composition, structure, formation conditions, and possible role in the production of potassic alkali magmas, Geokhimiya, v. 6, p. 873-888.
  50. -Selby, D. and Nesbitt, B.E., 2000. Chemical composition of biotite from the Casino porphyry Cu–Au–Mo mineralization, Yukon, Canada: Evaluation of magmatic and hydrothermal fluid chemistry.Chemical Geology, v. 171(1–2), p. 77-93.
  51. -Speer, J.A., 1984. Mica in igneous rocks, In: Micas, Bailey, S.W. (Eds.): Mineralogical Society of America, Review in Mineralogy, v. 13, p. 299-356.
  52. -Speer, J.A., 1987. Evolution of magmatic AFM mineral assemblages in granitoid rocks: The hornblende + melt = biotite reaction in the Liberty Hill pluton, South Carolina, American Mineralogist, v. 72, p. 863-878.
  53. -Stein, E. and Dietl, C., 2001. Hornblende thermobarometry of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of the Odenwald, Mineralogy and Petrology, v. 72, p. 185–207.
  54. -Vander boon, A., Kuiper, K.F., Villa, G., Renema, W., Meijers, M.J.M., Langereis, G., Aliyeva, E. and Krijgsman, W., 2015. Onset of Maikop sedimentation and cessation of Eocene arc volcanism in the Talysh Mountains, Azerbaijan, Geological Society Supplementary Publication, No. SUP18851, https://doi.org/10.1144/SP428.3.
  55. -Vincent, S.J., Morton, A.C., Carter, A., Gibbs, S. and Bara-badze, T.G., 2007. Oligocene uplift of the Western Greater Caucasus: an elect of initial Arabia Eurasia collision, Trinova, v. 19, p. 160-166.
  56. -Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals, American Mineralogist, v. 95, p. 185–187.
  57. -Wones, D.R. and Eugster, H.P., 1965. Stability of biotite-experiment theory and application, American Mineralogist, v. 50(9), p. 12-28.
  58. -Zhang, M.S., uddaby, P., Thompson, R.N. and Dungan, M.A., 1996. Barian-titanian phlogopite from potassic lavas in northeast China: chemistry, substitutions and paragenesis, American Mineralogist, v. 78, p. 1056-1065.