شرایط تبلور و شیمی کانی سنگ‌های آداکیتی شمال دهگلان، شرق کردستان

نوع مقاله : علمی -پژوهشی

نویسندگان

گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

چکیده

منطقه دهگلان در شمال غرب ایران واقع شده است و قسمتی از زون سنندج- سیرجان می‌باشد. در این محدوده چندین واحد آتشفشانی حد واسط تا اسیدی به سن میوسن فوقانی- پلیوسن رخنمون دارند. سنگ‌های این منطقه عمدتاً ترکیب آندزیت تا تراکی‌آندزیت و داسیت دارند. فنوکریست‌های آن‌ها عمدتاً از پلاژیوکلاز، هورنبلند و بیوتیت تشکیل شده است. کلینوپیروکسن با فراوانی بسیار کم در فنوکریست‌ها نیز قابل ملاحظه می‌باشد. در این مطالعه با استفاده از ویژگی­های کانی­شناسی به بررسی ترکیب، کینتیک تبلور کانی­ها و ژنز سنگ‌های شمال دهگلان پرداخته شده است. نتایج حاصل از آنالیز نقطه‌ای کانی‌ها در این سنگ‌ها نشان می‌دهند که ترکیب پلاژیوکلازها از آندزین تا الیگوکلاز در تغییر بوده و منطقه‌بندی در آنها دیده می‌شود. آمفیبول‌ها عمدتاً از نوع هورنبلند ادنیتی و مگنزیوهورنبلند، کلینوپیروکسن‌ها از نوع اوژیت و بیوتیت از نوع بیوتیت منیزیم‌دار هستند. بیوتیت‌ها اکثراً از نوع ماگمایی اولیه بوده و بین دو قطب فلوگوپیت و آنیت قرار گرفته‌اند. فوگاسیته اکسیژن ماگما براساس شیمی آمفیبول و کلینوپیروکسن در زمان تبلورشان بالا بوده است. بر مبنای ترکیب کلینوپیروکسن و بیوتیت ماهیت ماگمایی اولیه سازنده و محیط تکتونیکی سنگ‌های میوسن بالایی- پلیوسن کالک‌آلکالن بوده که در قوس‌ مرتبط با فرورانش در حاشیه قاره‌ای فعال تشکیل شده‌اند. کلینوپیروکسن‌ها به­طور متوسط در فشار 5 تا 6 کیلوبار و دمای حدود 1000 تا 1110 درجه سانتی‌گراد، آمفیبول‌ها در فشار 4 تا 6 کیلوبار و دمای بین 724 تا 862 درجه سانتی‌گراد، پلاژیوکلاز در دمای بین 550 تا 750 درجه سانتی‌گراد و بیوتیت در دمای 715 درجه سانتی‌گراد متبلور شده‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Crystallization condition and mineral chemistry of adakitic rocks in north of Dehgolan, east of Kurdistan

نویسندگان [English]

  • Bahman Rahimzadeh
  • پروین شکرالهی
  • غصون زهیره
  • فریبرز مسعودی
Department of Geology, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
چکیده [English]

IntroductionDehgolan region is located in the northwest of Iran. In geological classification it is a part of the Sanandaj-Sirjan zone. In this region, several intermediate to acidic volcanic rocks with Upper Miocene-Pliocene age are outcropped such as Sheida- Akhikamal and Kaniderezh. The volcanic rocks from this region rocks are mainly andesite, trachy andesite and dacite. White to gray dacitic ash has been thrown around the outcrops have pozzolanic functon. Main phenocrysts are plagioclase, hornblende and biotite. Clinopyroxene with a very low frequency is also detectable in phenocrysts. In this research, mineral chemistry is used in order to investigate kinetic of the crystallization and genesis of rock forming minerals.Materials and methodsIn this study, after field sampling and preparation of thin sections and petrographic of the samples, in order to study the chemical composition of the minerals of plagioclase, amphibole, clinopiroxen and biotite minerals in Dehgolan volcanic rocks, Eleven samples of the freshest rocks were selected for EMPA point analysis and about 80 points of four types of minerals were analyzed.Results and discussionThe results of the EPMA analysis of minerals indicate that plagioclases have a composition of andesine to oligoclase, Most have polysynthetic macles and also zoning is present. Their zoning is mostly normal, with the calcium content decreasing from core to rim. The amphiboles of the study area are calcic (calcium-rich and titanium-rich) and mainly of edenitic hornblende and magnesiohornblende types. Clinopyroxene are of augite type and based on clinopyroxene data, most of the samples in the study area are in the volcanic arcs (VAB) and (WPA). Biotites are Mg-biotite and are mostly of primary magmatic type and located between phlogopite and annite poles. The magma oxygen fugacity was high during the magma crystallization. Based on biotite composition, the Dehgolan volcanic samples belong to calc-alkaline magmatic assemblages of the orogenic environment. Clinopyroxenes in intermediate-acidic volcanic rocks in Dehgolan region show mainly crystallization at medium pressures and crystallize on average at 5 to 6 kb at temperatures of about 1000 to 1110 ° C, amphibole crystalized at 4 to 6 kb and 723 to 861 °C respectively. While the estimated temperature for plagioclase is between 550 to 750 °C and for biotite this is 715°C.ConclusionVolcanic rocks north of Dehgolan have a predominantly riodasite and sometimes andesitic composition with Calc-Alkaline nature, which erupts with large volumes of acid ash. The magma of the Adakitic rocks in northern Dehgolan was dehydrated during its formation, and only high-temperature, water-free minerals such as pyroxene and plagioclase were crystallized. In the following or on higher horizons collision with water in the crust iccurs and the crust is contaminated. The preponderance of xenolite confirms this, Oxygen fugitives are rised and biotite and amphibole minerals are crystallized. The biotite and clinopyroxenes geochemistry is indicative of the Calc-Alkaline Magmatic nature of the region, which erupted in the periphery of the active continental margin at the last phases of neotethys subduction in the northern Sanandaj-Sirjan region during the Mio Pliocene.

کلیدواژه‌ها [English]

  • Adakite
  • Thermobarometry
  • Dehgolan
  • Sanandaj-Sirjan
  • mineral chemistry
  1. -ایران‌نژادی، م.ر. و عباسی دهقی، س.، 1392. بررسی علل ایجاد بافت‌های گوناگون پلاژیوکلاز در سنگ‌های آتشفشانی سهند، هفدهمین همایش انجمن زمین‌شناسی ایران، دانشگاه شهید بهشتی، تهران، ایران.
  2. -آقانباتی، ع.، 1383. زمین‌شناسی ایران، سازمان زمین‌شناسی و اکتشافات معدنی کشور، تهران، ایران، 586 ص.
  3. -غصون، ز.، 1395. کانی‌شناسی و پتروگرافی سنگ‌های آتشفشانی منطقه قروه- بیجار (کردستان ایران)، پایان‌نامه کارشناسی ارشد، دانشگاه شهید بهشتی.
  4. -مسعودی، ف.، رحیم زاده، ب. و پورخورشیدی، ع.ر.، 1391. بررسی قابلیت پوزولانی خاکستری‌های آتشفشانی شمال دهگلان (شرق کردستان)، فصلنامه زمین‌شناسی ایران، سال 6، شماره 22، تابستان، ص 63-73.
  5. -مسعودی، ف. و رحیم‌زاده، ب.، 1390. بررسی قابلیت پوزولانی خاکستر‌های آتشفشانی شمال دهگلان (شرق کردستان، طرح پژوهشی دانشگاه شهید بهشتی، تهران، ایران.
  6. -معین وزیری، ح.، 1377. دیباچه‌ای بر ماگماتیسم در ایران، انتشارات دانشگاه تربیت معلم، تهران، ایران.
  7. -معین وزیری، ح.، عزیزی، ح.، مهرابی، ب. و ایزدی، ف.، 1387. ماگماتیسم الیگوسن در زون تراست زاگرس (محور صحنه- مریوان)، دور دوم فرورانش نئوتتیس در پالئوژن، مجله علوم دانشگاه تهران، شماره 34، ص 113-122.
  8.  
  9.  
  10.  
  11. -Abdel-Rahman, A.M., 1994. Nature of biotites from alkaline, calc-alkaline and peraluminous magmas, Journal of Petrology, v. 35, v. 525-541.
  12. -Ahmadzadeh, G.R., 2010. Petrological studies of volcanic rocks in NW of Marand spatially alkaline rocks, PhD thesis, University of Tabriz, Tabriz, Iran (in Persian).
  13. -Allen, M.B., Kheirkhah, M., Emami, M.H. and Mcledo, C.L., 2013. Generation of Arc and Within-plate Chemical Signatures in Collision Zone Magmatism: Quaternary Lavas from Kurdistan Province, Iran. Journal of Petrology, v. 54, p. 887-911.
  14. -Anderson, J.L. and Smith, D.R., 1995. The effect of temperature and fO2 on the Al-in-hornblende barometer, American Mineralogist, v. 80, p. 549-559.
  15. -Aoki, K.I. and Shiba, I., 1973. Pyroxenes from Lherzolite Inclusions of Itinome-Gata, Japan, Lithos, v. 6, p. 41-51.
  16. -Azizi, H. and Moinevaziri, H., 2009. Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran, Journal of Geodynamics, v. 47, p. 167-179.
  17. -Azizi, H., Asahara, Y. and Tsuboi, M., 2013. Quaternary high-Nb basalts: existence of young oceanic crust under the Sanandaj–Sirjan Zone, NW Iran, International Geology Review, v. 56, p. 167-186.
  18. -Azizi, H., Asahara, Y., Tsuboi, M., Takemura, K. and Razyani, S., 2014. The role of heterogenetic mantle in the genesis of adakites northeast of Sanandaj, northwestern Iran, Chemie der Erde–Geochemistry, v. 74, p. 87-97.
  19. -Best, M.G., 2001. Igneous Petrology, Blakwell, 485 p.
  20. -Boccaletti, M., Innocenti, F., Manetti, P., Mazzuoli, R., Motamed, A., Pasquare, G., Radicati, F. and Amin Sobhani, E., 1997. Neogene and Quaternary volcanism of the Bijar Area (Western Iran), Bulletin of Volcanology, v. 40-42, p. 121-135.
  21. -Buckley, V., Sparks, R. and Wood, B., 2006. Hornblende dehydration reactions during magma ascent at Soufrière Hills Volcano, Montserrat, Contributions to Mineralogy and Petrology, v. 151, p. 121-140.
  22. -Chiu, H.E., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S., Khatib, M.M. and Iizuka, Y., 2013. Zircon U-Pb age constraints from Iran on the magmatic evolution releted to Neotethyan subduction and Zagros orogeny, Lithos, v. 162, p. 70-87.
  23. -Coombs, M.L. and Gardner, J.E., 2004. Reaction rim growth on olivine in silica melts; implications for magma mixing, American Mineralogist, v. 89, p. 748-759.
  24. -Davidson, J.P. and Tepley, F.J., 1997. Recharge in volcanic systems: evidence from isotope profiles of phenocrysts, Science, v. 275(5301), p. 826-829.
  25. -Deer, W.A., Howie, A. and Sussman, J., 1986. An interdiction to rock- forming minerals.17th, Longman Ltd, 528 p.
  26. -Deer, W.A., Howie, R.A. and Zussman, J., 1991. An introduction to the Rock forming minerals. 17th, Longman, Ltd, 528 p.
  27. -Defant, M.J. and Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere, Nature, v. 374, p. 662-665.
  28. -Drummond, M.S., Defant, M.J. and Kepezhinskas, P.K., 1996. Petrogenesis of slab-derived trondhjemite-tonalite-dacite adakite magmas, Transactions of the Royal Society of Edinburgh, Earth Sciences, v. 87, p. 205-215.
  29. -Ernst, W.G., 2002. Paragenesis and thermobarometry of Caamphiboles in the Barcroft granodioritic pluton, central White Mountains, eastern California, American Mineralogist, v. 87, p. 478-490.
  30. -Ewart, A., 1979. A review of the mineralogy and chemistry of tertiary recent dacitic, latitic, rhyolitic and related salic volcanic rocks, In: Fred, B. (Eds.): Trondhjemites, dacites, and related rocks, Springer Verlag, Berlin, v. 6, p. 13-121.
  31. -Forster, M.D., 1960. Interpretation of the composition of tri octahedral mica, United State Geological Survey, Professional Paper, v. 354-B, p. 1-48.
  32. -Ghadami, G., Shahre Babaki, A.M. and Mortazavi, M., 2008. Post-collisional Plio-Pleistocene adakitic volcanism in Central Iranian volcanic belt: geochemical and geodynamic implications. Journal of Sciences, Iran, v. 19(3), p. 223-235.
  33. -Ghorbani, M.R., 2006. Lead enrichment in Neotethyan volcanic rocks from Iran: The implications of a descending slab. Geochemical Journal, v. 40, p. 557-568. doi:10.2343/geochemj.40.557.
  34. -Ginibre, C., Kronz, A. and Worner, G., 2002. Minor- and trace-element zoning in plagioclase: implications for magma chamber processes at Parinacota volcano, northern Chile. Contributions to Mineralogy and Petrology, v. 143, p. 300-315.
  35. -Hammarstrom, J.M. and Zen, E., 1986. Aluminum in hornblende: An empirical igneous geobarometer, American Mineralogist, v. 71, p. 1297-1313.
  36. -Hassanzadeh, J. and Wernicke, B.P., 2016. The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions, Tectonics, v. 35(3), p. 586-621. 10.1002/2015TC003926.
  37. -Helmy, H.M., Ahmed, A.F., E1Mahallawi, M.M. and Ali, S.M., 2004. Pressure, temperature and oxygen fugacity conditions of calc-alkaline granitoids, Eastern Desert of Egypt and tectonic implication, Journal of African Earth Science, v. 38, p. 255-268.
  38. -Henry, D.J. and Guidotti, C.V., 2002. Ti in biotite from metapelitic rocks: Temperature effects, crystallochemical controls and petrologic applications, American Mineralogist, v. 87, p. 375-382.
  39. -Henry, D.J., Guidiotti, C.V. and Thomson, J.A., 2005. The Ti saturation surface for low to medium pressure metapelitic biotite: Implications for Geothermometry and Ti-substitution Mechanisms, American Mineralogist, v. 90, p. 316-328.
  40. -Holland, T. and Blundy, J., 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry, Contribution to Mineralogy and Petrology, v. 116, p. 433-447.
  41. -Hollister, L.S., Grissom, G.C., Peters, E.K., Stowell, H.H. and Sisson, V.B., 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of clac-alkaline plutons, American Mineralogist, v. 72, p. 231-239.
  42. -Jahangiri, A., 2007. Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications, Journal of Asian Earth Sciences, v. 30, p. 433-447.
  43. -Johnson, M.C. and Rutherford, M.J., 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with applications to Long Valley Caldera (California) volcanic rocks, Geology, v. 17, p. 837-841.
  44. -Kroll, H., Evangelakakis, C. and Voll, G., 1993. Two-feldspar geothermometry: a review and revision for slowly cooled rocks, Contributions to Mineralogy and Petrology, v. 114, p. 510-518.
  45. -Le Base, M.J., 1962. The role of aluminum in igneous clinopyroxenes with relation to their parentage, American Journal of Science, v. 260, p. 267-288.
  46. -Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresh, V.W., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W. and Youzhi, G., 1997. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. American Mineralogist, v. 35, p. 219-246.
  47. -Leterrier, J., Maury, R.C., Thonon, p., Girard, D. and Marchal, M., 1982. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series, Earth and Planetary Science Letters, v. 59, p. 139-154.
  48. -Lofgren, G.E., 1980. An experimental study on the dynamic crystallization of silicate melts (Chapter 11). In: Hargraves, R .B. (Ed.), Physics of Magmatic Processes, Princeton University Press, Princeton, New Jersey
  49. -Loomis, T.P. and Welber, P.W., 1982. Crystallization processes in the Rocky Hill Granodiorite Pluton, California: An interpretation based on compositional zoning of plagioclase. Contributions to Mineralogy and Petrology, v. 8, p. 230-239.
  50. -Martin, H. and Moyen, J.F., 2002. Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth, Geology, v. 30, p. 319-322.
  51. -Miwa, T. and Geshi, N., 2012. Decompression rate of magma at fragmentation: inference from broken crystals in pumice of vulcanian eruption, Journal of Volcanology and Geothermal Research, v. 227, p. 76-84.
  52. -Mohajjel, M., Fergusson, C.L. and Sahandi, M.R., 2003. Cretaceous–Tertiary convergence and continental collision, Sanandaj-Sirjan zone, western Iran, Journal of Asian Earth Sciences, v. 21, p. 397-412.
  53. -Moromito, N., Fabrices, J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifer, F.A., Zussman, J., Akoi, K. and Gottardi, G., 1988. Nomeclature of pyroxenes, Mineralogical Magazine, v. 52, p. 535-550.
  54. -Nachit, H., Ibhi, A., Abia, E.H. and Ohoud, M.B., 2005. Discrimination between primary magmatic biotites, re-equilibrated biotites and neoformed biotites, Compter Rendus Geoscience, v. 337, p. 1415-1420.
  55. -Nisbet, E.G. and Pearce, J.A., 1977. Clinopyroxene composition in mafic lavas from different tectonic settings, Contributions to Mineralogy and Petrology, v. 63, p. 149-160.
  56. -Nouri, F., Azizi, H., Stern, R.J., Asahara, Y., Sedigheh, Kh., Madanipour, S. and Yamamoto, K., 2018. Zircon U-Pb dating, geochemistry and evolution of the Late Eocene Saveh magmatic complex, central Iran: Partial melts of sub-continental lithospheric mantle and magmatic differentiation, Lithos, v. 314-315, p. 274-292.
  57. -O'Connor, J.T., 1965. A classification for quartz-rich igneous rocks based on feldspar ratios. In: US Geological Survey Professional Paper B525, United States Geological Survey, p. 79-84.
  58. -Otten, M.T., 1984. The origin of brown hornblende in the artfjället gabbro and dolerites, Contribution to Mineralogy and Petrology, v. 86, p. 189-199.
  59. -Putirka, K.D., Mikaelian, H., Ryerson, F. and Shaw, H., 2003. New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho, American Mineralogist, v. 88(10), p. 1542-1554.
  60. -Schmidt, M.W., 1992. Amphibole composition in tonalite as a function of pressure an experimental calibration of the Al-hornblende barometer, Contribution to Mineralogy and Petrology, v. 110, p. 304-310.
  61. -Schweitzer, E.L., Papike, J.J. and Bence, A.E., 1979. Statistical Analysis of Clinopyroxenes from Deep-sea Basalts, American Mineralogist, v. 64, p. 502-513.
  62. -Shelley, D., 1993. Igneous and metamorphic rocks under the microscope, Chapman and Hall, University Press, Cambridge, Great Britain, 445 p.
  63. -Smith, J.V. and Brown, W.L., 1988. Feldspar minerals: Crystal structures, physical, chemical, and microstructural properties, Springer Verlag, New York, 646 p.
  64. -Soesoo, A., 1997. A multivariate statistical analysis of clinopyroxene composition: empirical coordinates for the crystallization P-T estimations, Geological Society of Sweden (Geologiska Föreningen), v. 119, p. 55-60.
  65. -Speer J.A., 1984. Micas in igneous rocks, In: Micas, Bailey, S. W. (editor), Reviews in Mineralogy, Mineralogical Society of America, v. 13, p. 299-356.
  66. -Stocklin, J. and Nabavi, M.H., 1973. 1/2,500,000 sheet, tectonic map of Iran.
  67. -Stocklin, J., 1968. Structural history and tectonic of Iran; A Review of the American Association, Petroleum Geologists Bull, v. 52, p. 1229-1258.
  68. -Toramaru, A., Noguchi, S., Oyoshihara, S. and Tsune, A., 2008. MND (microlite number density) water exsolution rate meter, Journal of Volcanology and Geothermal Research, v. 175, p. 156-167.
  69. -Tsuchiyama, A., 1985. dissolution kinetics of plagioclase in the melt of the system diopside-albite - anorthosite and origin of dusty plagioclase in andesite, Contribution to Mineralogy and petrology, v. 89, p. 1-16.
  70. -Viccaro, M., Giacomoni, P.P., Ferlito, C. and Cristofolini, R., 2010. Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts, Lithos, v. 116, p. 77-91.
  71. -Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock forming minerals, American Mineralogist, v. 95, p. 185-187.