بررسی زمان وقوع زلزله به کمک تحلیل زمان طبیعی برای زلزله‌ی 5/5 ریشتری جمهوری آذربایجان

نوع مقاله : علمی -پژوهشی

نویسندگان

1 گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران مرکز پایش پیش نشانگرهای زمین لرزه، آزمایشگاه مرکزی دانشگاه تبریز، دانشگاه تبریز، تبریز، ایران

2 گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران

چکیده

زلزله به عنوان یکی از بلایای طبیعی، از نظر جانی و مالی همواره خطری برای جوامع بشری محسوب می‌شود؛ به همین دلیل، تلاش برای پیش‌بینی زلزله به عنوان یکی از راه‌کارهای مقابله با زلزله همواره مورد توجه بوده است. از طرفی کشور ایران با قرارگیری در کمربند کوهزایی آلپ- هیمالیا که یکی از لرزه‌خیزترین مناطق جهان است، از نظر لرزه‌خیزی در وضعیت لرزه خیزی شدید قرار دارد. یکی از موفق‌ترین پیش‌نشانگرهای کوتاه-مدت زلزله، سیگنال‌های الکتریکی لرزه‌ای (SES) است که روش VAN نامیده شده است. در این ارتباط از اوایل سال 1393 ایستگاه‌هایی جهت ثبت و پایش سیگنال‌های الکتریکی لرزه‌ای در شمال‌غرب ایران نصب گردیده است. با دریافت و تحلیل این سیگنال‌ها، می‌توان بزرگا، رومرکز و زمان زلزله‌ی قریب‌الوقوع را تعیین کرد. این پژوهش به بررسی SES دریافت شده در تاریخ 16 مرداد 1394 و چگونگی انجام تحلیل‌های زمان طبیعی جهت پی بردن به زمان وقوع زلزله‌ی پیش رو در بازه‌ی زمانی کمتر از یک هفته می‌پردازد. نتایج تحلیل‌های زمان طبیعی نشان داد که این سامانه در تاریخ 12 شهریور 1394 به مرحله‌ی بحرانی رسیده است و متعاقباً در صبح 13 شهریور 1394 زلزله‌ی اصلی این سامانه به بزرگای 5/5 ریشتر در منطقه‌ی ائقوز جمهوری آذربایجان و در فاصله‌ی 310 کیلومتری از ایستگاه اسپیران به وقوع پیوست. نکته‌ی مهم در این رابطه این است که در فاصله‌ی زمانی 6 ماه پیش و 6 ماه پس از این زلزله، هیچ زلزله‌ی بزرگتر از 5 ریشتری در منطقه مورد مطالعه رخ نداده است؛ که خود تأییدی بر اتفاقی نبودن این پیش‌بینی است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the time occurrence of Azerbaijan earthquake M=5.5 by natural time analysis

نویسندگان [English]

  • Behzad Zamani Ghare chamani 1
  • Kamran Bakhti 2
  • Mohammad Hassanpour Sedghi 2
1 Department of Earth Sciences, Faculty of Natural Science, University of Tabriz, Tabriz, Iran Earthquake precursor monitoring center, Central Lab, Of University of Tabriz, University of Tabriz, Tabriz, Iran
2 Department of Earth Sciences, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
چکیده [English]

IntroductionEarthquakes as natural disasters, are always considered to be a risk for human societies in terms of economy and life. Therefore, attempts to predict earthquakes have always been considered as a way of risk management. On the other hand, Iran is located in a critical seismic condition through the Alpine-Himalayan orogenic belt, which is one of the most seismic areas in the world. Talesh Mountains are located in North West of Iran, in the south of the Caucasus orogeny, east of the Anatoly, and north of the Zagros orogeny. Many minor and major earthquake faults such as Tabriz fault, North Anatoli fault, East Anatoli fault, Zagros main fault and Alborz Western faults are effective in this area.Materials and methodsEarthquake prediction by electric precursors, known as VAN method, is one of the most successful short-term methods of earthquake prediction. This method (VAN) is based on researching the changes in Geo-electric potentials, called seismic-electric signals (SES) which can be detected before earthquakes. SES could be shown in special locations (sensitive sites) and sensitive sites receive the SES as a selection from the seismic sources. Therefore, it is possible to estimate the location of the event up to 100 Kms far away. The magnitude of the progressive earthquake could be forecasted up to 0.7-unit tolerance in Richter scale. Professor Vrotsos that is the founder of the VAN method and director of the solid state physics in University of Athens has published more than 250 papers and 8 books in this subject. In the last two decades the VAN team developed the time series analysis to forecast earthquakes, called “Natural time analysis”. In this paper, according to this method, the occurrence of one earthquake M=5.5 is analyzed. Results and discussionSince 2014 a network of VAN stations were installed in NW Iran for recording and monitoring the Seismic Electric Signals (SES). Receiving and analyzing these signals, could help determine the magnitude, epicenter and time of impending earthquakes. This research investigates an SES received on 7th of August 2015 and application of natural time analysis to find out the time occurrence of the subsequent impending earthquake, in a time window less than a week. The natural time analysis indicates that this system reached the critical point, on September 3rd 2015 and subsequently on 4th of September 2015 the 5.5 Richter (MN) main shock occurred in Oghuz municipality in the Republic of Azerbaijan, at a distance of 310 km from Ispiran station. The important point is that this earthquake is the only earthquake greater than 5 Richter occurring in the study area in 6 months before and after this event. This confirms that this prediction wasn’t random.ConclusionSince 2014 a network of VAN stations were installed in NW Iran for recording and monitoring the Seismic Electric Signals (SES). Receiving and analyzing one of the signals, helped determine the magnitude, epicenter and time of impending earthquakes. This research investigates an SES received on 7 August 2015 and how to apply the natural time analysis to find out the occurrence of the subsequent impending earthquake, in a time window less than a week. The natural time analysis indicates that this system reached the critical point, on 3 September 2015 and subsequently On 4 September 2015 the 5.5 Richter (MN) main shock occurred in Oghuz municipality in the Republic of Azerbaijan, at a distance of 310 km from Ispiran station.

کلیدواژه‌ها [English]

  • Earthquake prediction
  • Natural Time analysis
  • Seismic Electric Signals (SES)
  1. -زمانی قره‌چمنی، ب.، حمیدی هریس، ح. و بروستانی، ج.، 1395. معرفی شبکه اندازه‌گیری پیش‌نشانگرهای الکتریکی زمین‌لرزه‌ها به روش VAN در شمال‌غرب ایران، م. فیزیک زمین و فضا، شماره 42(1)، ص 25-36.
  2.  
  3.  
  4. -Berberian, M., 1976. Contribution to the Seismotectonics of Iran,1st edn., Part 10, Rep., Geological Survey of Iran, v. 39, 518 p.
  5. -Chmel, A., Smirnov, V. and Golovanov, O., 2010. Variability of scaling parameters in nonconservative systems: Geophysical aspect, Physica A 389, p. 2617-2627.
  6. -Colangelo, G., Lapenna, V. and Telesca, L., 2008. Study of self potential anomalous fluctuations in a seismic active zone of Lucano Apennine (southern Italy): recent results, Nat. Hazards Earth Syst. Sci, v. 8, p. 1099-1104.
  7. -Flores-Marquez, L., Marquez-Cruz, J., Ramirez-Rojas, A., Galvez-Coyt, G. and Angulo-Brown, F., 2007. A statistical analysis of electric self-potential time series associated to two 1993 earthquakes in Mexico, Natural Hazards and Earth System Science, v. 7(5), p. 549-556.
  8. -Guzman-Vargas, L., Ramirez-Rojas, A., Hernandez-Perez, R. and Angulo-Brown, F., 2009. Correlations and variability in electrical signals related to earthquake activity, Physica A, v. 388, p. 4218-4228.
  9. -Holliday, J., Rundle, J., Tiampo, K., Klein, W. and Donnellan, A., 2006. Systematic procedural and sensitivity analysis of the pattern informatics method for forecasting large (m > 5) earthquake events in southern California, Pure and Applied Geophysics, v. 163, p. 2433-2454.
  10. -Huang, Q.H., 2011. Rethinking earthquake-related DC-ULF electromagnetic phenomena: towards a physics-based approach, Nat. Hazard Earth Sys, v. 11, p. 2941-2949.
  11. -Huang, Q.H., 2011. Retrospective investigation of geophysical data possibly associated with the M(s)8.0 Wenchuan earthquake in Sichuan, China, J. Asian Earth Sci, v. 41, p. 421-427.
  12. -Institute of Geophysics University of Tehran, IGUT. catalogue: http://irsc.ut.ac.ir.
  13. ISC, International Seismological Centre, http://www.isc.ac.uk.
  14. -Orihara, Y., Kamogawa, M., Nagao, T. and Uyeda, S., 2012. Preseismic anomalous telluric current signals observed in Kozu-shima Island, Japan, Proceedings of the National Academy of Sciences, p. 201215669.
  15. -Orihara, Y., Kamogawa, M., Nagao, T. and Uyeda, S., 2009. Independent component analysis of geoelectric field data in the northern Nagano, Japan, Proceedings of the Japan Academy, Ser. B., v. 85, p. 435-442.
  16. -Sarlis, N.V., Skordas, E.S. and Varotsos, P.A., 2009. Multiplicative cascades and seismicity in natural time, Physical Review E, v. 80(2), p. 022102.
  17. -Sarlis, N.V., Skordas, E.S., Lazaridou, M.S. and Varotsos, P.A., 2008. Investigation of seismicity after the initiation of a seismic electric signal activity until the main shock. Proceedings of the Japan Academy, Series B, v. 84(8), p. 331-343.
  18. -Uyeda, S., Hayakawa, M., Nagao, T., Molchanov, O., Hattori, K., Orihara, Y., Gotoh, K., Akinaga, Y. and Tanaka, H., 2002. Electric and magnetic phenomena observed before the volcano-seismic activity in 2000 in the Izu Island Region, Japan, Proceedings of the National Academy of Sciences, v. 99(11), p. 7352-7355.
  19. -Uyeda, S., Nagao, T., Orihara, Y., Yamaguchi, T. and Takahashi, I., 2000. Geoelectric potential changes: Possible precursors to earthquakes in Japan, Proceedings of the National Academy of Sciences, v. 97(9), p. 4561-4566.
  20. -Uyeda, H., Nagao, T. and Kamogawa, M., 2009. Short-term earthquake prediction: Current status of seismo-electromagnetics, Tectonophysics, v. 470, p. 205-213.
  21. -Varotsos, P. and Alexopoulos, K., 1984a. Physical properties of the variations of the electric field of the earth preceding earthquakes, I. Tectonophysics, v. 110(1-2), p. 73-98.
  22. -Varotsos, P. and Alexopoulos, K., 1984b. Physical properties of the variations of the electric field of the earth preceding earthquakes, II. Determination of epicenter and magnitude. Tectonophysics, v. 110(1-2), p. 99-125.
  23. -Varotsos, P. and Lazaridou, M., 1991. Latest aspects of earthquake prediction in Greece based on seismic electric signals. Tectonophysics, v. 188(3-4), p. 321-347.
  24. -Varotsos, P., Alexopoulos, K. and Lazaridou, M., 1993. Latest aspects of earthquake prediction in Greece based on seismic electric signals, II. Tectonophysics, v. 224(1-3), p. 1-37.
  25. -Varotsos, P., Sarlis, N. and Skordas, E., 2003. Long range correlations in the signals that precede rupture: Further investigations. Physical Review, v. 67, p. 021109.
  26. -Varotsos, P.A. and Alexopoulos, K.D., 2013. Thermodynamics of point defects and their relation with bulk properties, Elsevier, v. 14, p. 214-228.
  27. -Varotsos, P.A., 2005. The Physics of Seismic Electric Signals, TerraPub, 475 p.
  28. -Varotsos, P.A., 2006. What happened before the last five strong earthquakes in Greece: Facts and open questions. Proceedings of the Japan Academy, Series B, v. 82(2), p. 86-91.
  29. -Varotsos, P.A., Sarlis, N.V. and Skordas, E.S., 2001. Spatio-temporal complexity aspects on the interrelation between seismic electric signals and seismicity. Practica of Athens Academy, v. 76, p. 294-321.
  30. -Varotsos, P.A., Sarlis, N.V. and Skordas, E.S., 2011. Natural Time Analysis of Seismic Electric Signals. In Natural Time Analysis: The New View of Time, Springer, Berlin, Heidelberg.
  31. -Varotsos, P.A., Sarlis, N.V. and Skordas, E.S., 2016. On the motivation and foundation of natural time analysis: useful remarks. Acta Geophysica, v. 64(4), p. 841-852.
  32. -Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Christopoulos, S.R.G. and Lazaridou-Varotsos, M.S., 2015. Identifying the occurrence time of an impending mainshock: a very recent case, Earthquake Science, v. 28(3), p. 215-222.
  33. -Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Tanaka, H.K. and Lazaridou, M.S., 2006. Entropy of seismic electric signals: Analysis in natural time under time reversal, Physical Review E, v. 73(3), p. 031114.
  34. -Varotsos, P.A., Sarlis, N.V., Tanaka, H.K. and Skordas, E.S., 2005. Similarity of fluctuations in correlated systems: The case of seismicity. Physical Review E, v. 72(4), p.041103.
  35. -Varotsos, P.A., Sarlis, N.V. and Skordas, E.S., 2006. On the recent advances in the study of seismic electric signals, (VAN method), Physics and Chemistry of the Earth, v. 31, p. 189-197.