نقدی بر مساله حریم گسل؛ خطر گسیختگی سطحی ناشی از گسلش زمین‌لرزه‌ای در پهنه شمالی کلان شهر تهران، البرز مرکزی، ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه حوضه‌های رسوبی و نفت، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

2 گروه زمین و منابع، دانشکده علوم زمین و محیط زیست، دانشگاه کوئینزلند، بریزبان، استرالیا

3 گروه مدیریت بحران، پژوهشکده سوانح طبیعی، تهران، ایران

چکیده

مقدمه: کلان­شهر تهران، پایتخت ایران، در دامنه جنوبی بخش مرکزی رشته کوه­های البرز قرار گرفته است. به دلایل شناخته شده و آشکار زمین‌ساختی، از جمله رویداد زمین‌لرزه‌های ویرانگر تاریخی و دگرشکلی واحدهای نهشتی کواترنری، زمین‌لغزش‌های بزرگ قدیمی و داده‌های ژئودزی رشته کوه‌های البرز هنوز از نظر زمین‌ساختی جنبا است. در این مقاله با جمع‌بندی اطلاعات موجود و جدید، نقشه‌ای بروز شده از پراکندگی گسل­ها در پهنه شمالی شهر تهران ارائه شده است.
مواد و روش­ها: این مطالعه دربرگیرنده تدوین نقشه گسل­های بخش شمالی شهر تهران با مقیاس نقشه­برداری بیش از 1:20000 است. این تلاش با تکیه بر نقشه‌های زمین‌شناسی، سوابق لرزه‌ای تاریخی و دستگاهی و بینش‌های موجود و جدید مربوط به گسل‌ها که از بررسی دقیق تصاویر ماهواره‌ای، آرشیوهای عکس‌برداری هوایی مربوط به سال ۱۹۵۵ و تحقیقات میدانی جامع است، صورت گرفته است. نمونه­هایی از گسلش کواترنری برجسته ارائه شده­اند. اطلاعات مفصل در نسخه کامل فارسی توضیح داده شده است.
نتایج و بحث: شکل 1 نقشه بروزرسانی شده از موقعیت گسل­های مهم در پهنه شمالی شهر تهران را نشان می‌دهد. نکته مهم در این نقشه شناخت ادامه روندهای گسل‌هایی است که پیش از این معرفی شده بودند اما انتهای آنها نامعلوم بود. همچنین شبکه گسترده‌ای از شکستگی‌ها یا در واقع گسل­های فرعی متعلق به سامانه گسل شمال تهران به ویژه در بخش فرادیواره‌ای آن به نقشه درآمده‌اند که پیش از این منتشر نشده است. گسل شمال تهران، گسل پردیسان، گسل نیاوران، گسل محمودیه، گسل داوودیه و گسل کن با بیشترین طول، خطرناک‌ترین روندهای گسلی داخل شهر تهران به شمار می‌آیند. بررسی‌های ما نشان می‌دهد در شهر تهران دست کم بیست بیمارستان مهم دولتی و خصوصی در مواجهه مستقیم با خطر گسیختگی سطحی قرار دارند. در کنار این، مراکز مهم دیگری از جمله چند دانشگاه و مراکز حساس دیگر از جمله انبار نفت در شمال شهران نیز قرار دارند. بر مبنای طول گسل­ها، گسل­های پردیسان، نیاوران، محمودیه و گسل­های موجود در منطقه چیتگر که همگی از سامانه گسلی شمال تهران متاثر هستند، خطرناک‌ترین روندها از دید گسیختگی سطحی نیز شامل می‌شوند.  
نتیجه­ گیری: در کمربند شمالی شهر، خطر زمین‌لغزش‌های ناشی از زمین‌لرزه بسیار جدی است و سوابق رخداد زمین‌لغزش‌های بسیار بزرگ باستانی در دامنه‌های جنوبی البرز این مساله را تایید می‌کنند. هم اکنون می‌توان چالش اصلی خطر زمین‌لرزه و گسیختگی سطحی در شهر تهران، عدم شناخت گسل­های مهم نیست، بلکه عدم توجه به این موضوع مهم و نبود دیدگاه یکپارچه در سطح کلان برای مقابله با آن است. مسایل اقتصادی یکی از موانع اصلی در رعایت حریم گسل در شهر تهران بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A critique on the problem of the fault zone regulatory act in Iran; An overview of the surface rupture hazard caused by earthquake faulting in the northern zone of Tehran metropolis, Central Alborz, Iran

نویسندگان [English]

  • Mohsen Ehteshami-Moinabadi 1
  • Shahram Nasiri 2
  • Ali Saket 3
  • Fatemeh Moradi Ghahdarijani 1
1 Department of Sedimentary Basins and Petroleum, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
2 Department of Earth and Resources, School of Earth Sciences and Environment, University of Queensland, Brisbane, Australia
3 Department of Crisis Management, Natural Disasters Institute of Iran, Tehran, Iran
چکیده [English]

Introduction: The megacity of Tehran, Iran's capital, is positioned on the southern slope of the central part of the Alborz Mountain range. This range displays active tectonics, resulting in a history of destructive earthquakes, quaternary deformation, massive ancient landslides, and geodetic phenomena. Earthquake movement and deformation can lead to the emergence of numerous secondary geological and non-geological hazards. This article presents a revised map showcasing the fault distribution in the northern region of the Tehran megacity, based on a synthesis of both current and novel information.
Materials and methods: This study entails the formulation of a fault map encompassing the northern sector of Tehran city, employing a cartographic scale exceeding 1:20000. This endeavor capitalizes on geological maps, historical as well as instrumental seismic records, and both extant and novel fault-related insights extrapolated from satellite image scrutiny, aerial photography archives dating back to 1955, and comprehensive field investigations. Subsequently, instances of quaternary faulting have been delineated for salient fault lines. Through a comprehensive examination of strategies aimed at mitigating the risk posed by surface rupture events, heightened attention has been accorded to, and an evaluation has been undertaken of this peril within the delineated study expanse. Elaborated information is expounded upon within the corresponding Persian manuscript.
Results and discussion: Figure 1 illustrates the revised cartographic representation delineating the geographic positioning of pivotal faults situated within the northern precinct of Tehran. Of paramount significance within this cartographic presentation is the discernment of fault line continuities previously introduced but whose terminal extents remained obscure. Moreover, an expansive network of fractures or subsidiary faults aligned with the North Tehran fault system has been meticulously charted, particularly in the hangingwall segment thereof, hitherto unreported in extant literature. The North Tehran fault, alongside the Pardisan, Niavaran, Mahmoudieh, Davoodieh, and Kan faults, the latter boasting the most extensive reach, collectively constitute the foremost fault trends imparting significant geological risk within the confines of Tehran city. Creating comprehensive geoscience data systems tailored to urban scales emerges as a viable solution to address myriad requisites, encompassing the effective management of contemporary urban risks. Preliminary inquiries substantiate the assertion that a minimum of twenty prominent public and private hospitals within Tehran directly confront the hazard of surface rupture events.
Conclusion: Contemporary perspectives pertaining to the computation and observation of fault setbacks underscore the imperative of meticulous fault location mapping prior to urban development. While subsurface methodologies hold promise for generating these highly accurate maps within regions characterized by youthful sedimentary deposits, historical data gleaned from fault observations provide valuable context. Given sufficient financial resources, such historical data can corroborate or negate the veracity of known fault lines. Absent such resources, judicious evaluation compels the prioritization of fault line delineation and the concomitant alignment of construction codes therewith. Of paramount import within the context of the presented map is the recognition of fault trend continuities previously introduced, the onward trajectory of which remained enigmatic. Additionally, an extensive matrix of fractures or attendant subsidiary faults inherent to the North Tehran fault system has been methodically charted, with a notable focus on its hanging wall portion hitherto unpublished. The Northern Tehran fault, in conjunction with the Pardisan, Niavaran, Mahmoudieh, Davoodieh, and Kan faults, the latter exhibiting the most expansive extent, collectively constitute the preeminent fault trends engendering pronounced geological risk within the confines of Tehran city. It is noteworthy that although faults such as the Mosha fault, situated at a minimum distance of 30 km from Tehran city, are acknowledged as influential seismic sources for the city, the paramount concern lies in the evaluation of surface rupture hazard, wherein those faults positioned within the urban area assume a markedly more critical role.

کلیدواژه‌ها [English]

  • Tehran
  • Fault setback
  • Seismic hazard
  • Earthquake
  • Fault surface rupture
  • North Tehran Fault
-Abbassi, M.R. and Farbod, Y., 2009. Faulting and folding in quaternary deposits of Tehran’s piedmont (Iran). J. Asian Ear. Sci., v. 34(4), p. 522-531.
-Allahdadi, M., Nejati, B. and Beiraghian, P., 2019. A historical survey of playing toys in ancient Persia. Theoretical Principles of Visual Arts, v. 4(1), p. 131-140 (in Persian).
-Alimardan, S., Solaymani Azad, S., Ghorashi, M., Ghorashi, M., Oveisi, B. and Hatami, A., 2015. Morphotectonic Markers and Active Faulting Research In Hashtgerd New Town, West Of Karaj, Scientific Quarterly Journal of Geosciences, v. 24(1393), p. 227-234. Doi: 10.22071/gsj.2015.43417 (in Persian).
-Aliyannezhadi, A., Mehrnia, S.R., Kimiagar, S., Rahimi, H. and Sadrmohammadi, N., 2020. Evaluation of GPR method in identification hidden faults of Alluvial deposits in north of Persian Gulf artificial lake, twenty-two district of Tehran, J. Applied Geoph., v. 179, p. 104108.
-Ambraseys, N.N. and Melville, C.P., 1982. A History of Persian Earthquakes, Cambridge University Press, Cambridge, 219 p.
-Axen, G.J., Lam, P.S., Grove, M., Stockli, D.F. and Hassanzadeh, J., 2001. Exhumation of the west-central Alborz Mountains, Iran, Caspian subsidence, and collision-related tectonics: Geology, v. 29, p. 559-562, Doi:10.1130/0091-7613(2001)029<0559:EOTWCA>2.0.CO;2.
-Ballato, P., Uba, C.E., Landgraf, A., Strecker, M.R., Sudo, M., Stockli, D.F., Friedrich, A. and Tabatabaei, S.H., 2011. Arabia-Eurasia continental collision; insights from late Tertiary foreland-basin evolution in the Alborz Mountains, northern Iran: GSA Bulletin, v. 123, p. 106-131. doi:10.1130/B30091.1.
-Ballato, P., Stockli, D.F., Ghassemi, M.R., Landgraf, A., Strecker, M.R., Hassanzadeh, J., Friedrich, A. and Tabatabaei, S.H., 2013. Accommodation of transpressional strain in the Arabia-Eurasia collision zone: New constraints from (U-Th)/He thermochronology in the Alborz Mountains, north Iran: Tectonics, v. 32, p. 1-18. doi:10.1029/2012TC003159.
-Ballato, P., Landgraf, A., Schildgen, T., Stockli, D.F., Fox, M., Ghassemi, M.R., Kirby, E. and Strecker, M.R., 2015. The growth of a mountain belt forced by base-level fall; tectonics and surface processes during the evolution of the Alborz Mountains, N Iran: Ear. Planetary Sci. Lett., v. 425, p. 204-218. Doi: 10.1016/j.epsl.2015.05.051.
-Batatian, D., 2002. Minimum standards for surface fault rupture hazard studies, Salt Lake County Geologic Hazards Ordinance, 11 p.
-Berberian, M., Ghoreishi, M., Ravesh, B.A. and Ashjaei, A.M., 1983. Seismotectonic and earthquake fault hazard investigations in the Tehran region, Geological Survey of Iran (No. 56). Report (in Persian).
-Berberian, M., Ghorashi, M., Arjangravesh, B. and Mohajer Ashjaie, A., 1993. Seismotectonic and earthquake-fault hazard investigations in the great Ghazvin Region. Geological Survey of Iran, Report, v. 61, 197 p (in Persian).
-Berberian, M., 1976. Quaternary Faults in Iran, in Berberian, M., ed., Contribution to the Seismotectonics of Iran, Part II: Geological Survey of Iran, Report, v. 39, p. 187-258.
-Berberian, M., 2014. Earthquakes and Coseismic Surface Faulting on the Iranian Plateau, A Historical Social and Physical Approach, Berberian, M.,(ed.): Elsevier, Developments in Earth Surface Processes, v. 17, 714 p.
-Berberian, M., Qorashi, M., Jackson, J.A., Priestley, K. and Wallace, T., 1992. The Rudbar-Tarom earthquake of June 20, 1990 in NW Persia: Preliminary field and seismological observations, and its tectonic significance: Bull. Seismological Soc. Am., v. 82(4), p. 1726-1755.
-Berberian, M. and Yeats, R.S., 1999. Patterns of historical rupture in the Iranian Plateau: Bull. Seismological Soc. Am., v. 89(1), p. 120-139.
-Berberian, M. and Yeats, R.S., 2001. Contribution of archaeological data to studies of earthquake history in the Iranian Plateau, Paul Hancock Memorial Issue: J. Struc. Geol., v. 23, p. 563-584. Doi:10.1016/S0191-8141(00)00115-2.
-Berberian, M. and Walker, R., 2010. The Rudbār Mw 7.3 earthquake of 1990 June 20; seismotectoniocs, coseismic and geomorphic displacements, and historic earthquakes of the western ‘High-Alborz’ of Iran. Geophy. J. Int., v. 182(3), p. 1577-1602. Doi:10.1111/j.1365-246X.2010.04705.x.
-Berberian, M. and Yeats, R.S., 2016, Tehran: An earthquake time bomb, in Sorkhabi, R., ed., Tectonic Evolution, Collision, and Seismicity of Southwest Asia: In Honor of Manuel Berberian’s Forty-Five Years of Research Contributions: GSA Special Paper, v. 525, p. 1-84. doi:10.1130/2016.2525(04).
-Boncio, P., Liberi, F., Caldarella, M. and Nurminen, F.C., 2018. Width of surface rupture zone for thrust earthquakes: implications for earthquake fault zoning. Nat. Haz. Ear. Sys. Sci., v. 18(1), p. 241-256. Doi: 10.5194/nhess-18-241-2018.
-Bonilla, M.G., 1967. Historic surface faulting in continental United States and adjacent parts of Mexico. National Center for Earthquake Research, USGS. 32 p.
-Christenson, G.E., Batatian, L.D. and Nelson, C.V., 2003. Guidelines for Evaluating Surface-Fault-Rupture Hazards in Utah, Miscellaneous Publication 03-6, Utah Geological Survey, 14 p.
-Djamour, Y., Vernant, P., Bayer, R., Nankali, H.R., Ritz, J.F., Hinderer, J., Hatam, Y., Bernard, L., Le Moigne, N., Sedighi, M. and Khorrami, F., 2010. GPS and gravity constraints on continental deformation in the Alborz mountain range, Iran: Geoph. J. Int., v. 183(3), p. 1287-1301, Doi:10.1111/j.1365-246X.2010.04811.x.
-Du, Y., Xie, F. and Wang, Z., 2012. Wenchuan earthquake surface fault rupture and disaster: a lesson on seismic hazard assessment and mitigation. Int. J. Geoph., 974763. Doi:10.1155/2012/974763
-Ehteshami-Moinabadi, M. and Nasiri, Sh., Geometrical and structural setting of landslide dams of the Central Alborz: a link between earthquakes and landslide damming, Bull. Eng. Geo. Env., v. 78(1), p. 69-88. Doi: 10.1007/s10064-017-1021-8.
-Ehteshami Moinabadi, M., 2016. Surface Fault Rupture Hazard in the Pardis Town, Tehran Province: Regarding Fault Setback in Urban Development, Advanced Applied Geology, v. 6(1), p. 48-62 (in Persian).
-Elliott, J.R., Bergman, E.A., Copley, A.C., Ghods, A.R., Nissen, E.K., Oveisi, B., Tatar, M., Walters, R.J. and Yamini‐Fard, F., 2015. The 2013 Mw 6.2 Khaki-Shonbe (Iran) earthquake: insights into seismic and aseismic shortening of the Zagros sedimentary cover. Ear. Space Sci., v. 2, p. 435-471. Doi: 10.1002/2015EA000098.
-Emami, M.H. and Amini, B., 1993. Geology map of Tehran (1:100,000 scale), Geological Survey of Iran, Tehran (in Persian).
-Engalenc, M., 1968. Contribution à la Geologie, Geomorphologie, Hydrogéologie de la région de Teheran (Iran): Montpellier, France, Centre d’Etudes et de Recherches Hydrogéologiques, 365 p.
-Fenton, C. and Kernohan, J., 2015. Characterization of surface fault rupture for civil engineering design. Eng. Geo. Soc. Territory, v. 5, p. 1003-1008. Doi: 10.1007/978-3-319-09048-1_192.
-Garcia, F.E. and Bray, J.D., 2022. Discrete element analysis of earthquake surface fault rupture through layered media. Soil Dyn. Earthquake Eng., v. 152, p. 107021. Doi: 10.1016/j.soildyn.2021.107021.
-Ghassemi, M.R., 2016. Surface ruptures of the Iranian earthquakes 1900–2014: Insights for earthquake fault rupture hazards and empirical relationships. Ear. Sci. Rev., v. 156, p. 1-13. Doi: 10.1016/j.earscirev.2016.03.001.
-Ghassemi, M.R., Fattahi, M., Landgraf, A., Ahmadi, M., Balato, P. and Tabatabaei, S.H., 2014. Kinematic links between the eastern Mosha fault and the North Tehran fault, Alborz range, northern Iran: Tectonophysics, v. 622, p. 81-95. Doi:10.1016/j.tecto.2014.03.007.
-Grow, C. and Palm, R., 1982. Population and housing in the special studies zones. University of Colorado, Special Publication, v. 1, 10 p.
-Guest, B., Axen, G.J., Lam, P.S. and Hassanzadeh, J., 2006a. Late Cenozoic shortening in the west-central Alborz Mountains, northern Iran, by combined conjugate strike-slip and thin-skinned deformation: Geosphere, v. 2, p. 35-52. Doi:10.1130/GES00019.1.
-Guest, B., Stockli, D.F., Grove, M., Axen, G.J., Lam, P.S. and Hassanzadeh, J., 2006b. Thermal histories from the central Alborz Mountains, northern Iran; implications for the spatial and temporal distribution of deformation in northern Iran: GSA Bulletin, v. 118, p. 1507-1521, Doi:10.1130/B25819.1.
-Jackson, J., Priestley, K., Allen, M. and Berberian, M., 2002. Active tectonics of the South Caspian Basin. Geoph. J. Int., v. 148(2), p. 214-245. Doi: /10.1046/j.1365-246X.2002.01588.x.
-Japan International Cooperation Agency (JICA), 2000. The Study on Seismic Microzoning of the Greater Tehran Area in the Islamic Republic of Iran; Draft Final Report, Main Report Volume 1, Existing Conditions: Tehran, Japan International Cooperation Agency (JICA) and Centre for Earthquake & Environmental Studies of Tehran (CEST), Tehran Municipality. Pacific Consultants International (Tokyo), OYO Corporation (Tumon, Guam), 3 volumes (1: 88 p., 2: 173 p., 3: 105 p.).
-Japan International Cooperation Agency (JICA), 2009. Outline of the Project on the Establishment of Emergency Response Plan for the First 72 Hours after an Earthquake, City of Tehran: Tehran. Japan International Cooperation Agency (JICA), https://openjicareport.jica.go.jp/pdf/11849940.pdf (accessed 2022).
-Kawashima, K., 2002. Damage of bridges resulting from fault rupture in the 1999 Kocaeli and Duzce, Turkey earthquakes and the 1999 Chi-Chi, Taiwan earthquake. Struc. Earthq. Eng., v. 19(2), p. 179-197. Doi: 10.2208/jsceseee.19.179s
-Masson, F., Anvari, M., Djamour, Y., Walpersdorf, A., Tavakoli, F., Daigni’eres, M., Nankali, H. and Van Gorp, S., 2007. Large-scale velocity field and strain tensor in Iran inferred from GPS measurements; new insight for the present-day deformation pattern within NE Iran. Geoph. J. Int., v. 170, p. 436-440, Doi:10.1111/j.1365-246X.2007.03477.x.
-McDonald, G.N., Kleber, E.J., Hiscock, A.I., Bennett, S. and Bowman, S.D., 2020. Fault trace mapping and surface-fault-rupture special study zone delineation of the Wasatch fault zone, Utah and Idaho. Utah Geological Survey. 23 p. Doi:10.34191/RI-280.
-Mousavi, Z., Walpersdrof, A., Walker, R.T., Tavakoli, F., Pathier, E., Nankali, H., Nilfouroushan, F. and Djamour, Y., 2013. Global positioning system constraints on the active tectonics of NE Iran and the South Caspian region: Ear.Planetary Sci. Lett. 377–378, p. 287-298. Doi:10.1016/j.epsl.2013.07.007.
-Nazari, H., Ritz, J.F., Talebian, M. and Moosavi, A., 2005. Seismotectonic Map of the Central Alborz: Tehran (scale 1:250,000), Geological Survey of Iran.
-Nazari, H., Ritz, J.F., Salamati, R., Solaymani, S., Balescu, S., Michelot, J.L., Ghassemi, A., Talebian, M., Lamothe, M. and Ghorashi, M., 2007. Palaeoseismological analysis in central Alborz, Iran, in Proceedings, 1957 Gobi-Altay Earthquake Commemorating Conference, 25 July–08 August, 2007, Extended Abstracts: Ulaanbaatar, Mongolia, Mongolian Institute of Earth’s Crust, Research Center of Astronomy and Geophysics, 3 p.
-Nazari, H., Ritz, J.F., Salamati, R., Balescu, S., Michelot, J.L., Massault, M. and Ghorashi, M., 2008. Paleoseismological analysis in Tehran region along the North Tehran and Taleghan faults, and the Rey and Kahrizak scarps: Paris, Proceedings, Société Géologique de France, October 6–7, extended abstract, 2 p.
-Nazari, H., Ritz, J.F., Walker, R.T., Salamati, R., Rizza, M., Patnaik, R., Hollingsworth, J., Alimohammadian, H., Jalali, A., Kaveh Firouz, A. and Shahidi, A., 2014. Palaeoseismic evidence for a medieval earthquake, and preliminary estimate of late Pleistocene slip-rate, on the Firouzkuh strike slip fault in the central Alborz region of Iran: J. Asian Ear. Sci., v. 82, p. 124-135, Doi:10.1016/j.jseaes.2013.12.018.
-Nazari, H., 2016. Translation of Earthquakes and coseismic surface faulting on the Iranian Plateau by M. Berberian (2014): Elsevier. Hamrah Oloum & Avand Danesh Publications, 656 p (in Persian).
-Nestle, C. and Lem, G., 2010. Manual for preparation of geotechnical report, Department of Public Works, Los Angeles County, 70 p.
-Nilforoushan, F., Masson, F., Vernant, P., Vigny, C., Martinod, J., Abbassi, M., Nankali, H., Hatzfeld, D., Bayer, R., Tavakoli, F., Ashtiani, A., Doerflinger, E., Daignieres, M., Collard, P. and Chery, J., 2003. GPS network monitors the Arabia-Eurasia collision deformation in Iran: J. Geodesy, v. 77, p. 411-422. Doi:10.1007/s00190-003-0326-5.
-Niknami, K. and Dehpahlavan, M., 2013. Formation of the Silk Road in the light of security Case study: The Relics and Archaeological Finds Periphery of Road, from Semnan to Garmsar, Central North of Iran. Geopolitics Quarterly, v. 9(30), p. 230-255 (in Persian).
-Oettle, N.K. and Bray, J.D., 2013. Geotechnical mitigation strategies for earthquake surface fault rupture. J. Geotech. Geoenviron. Eng., v. 139(11), p. 1864-1874.
-Quigley, M., Van Dissen, R., Villamor, P., Litchfield, N., Barrell, D., Furlong, K., Stahl, T., Duffy, B., Bilderback, E., Noble, D. and Townsend, D., 2010. Surface rupture of the Greendale fault during the Darfield (Canterbury) earthquake, New Zealand: initial findings. Bull. New Zealand Soc. Earthq. Eng., v. 43(4), p. 236-242. Doi: 10.5459/bnzsee.43.4.236-242.
-Ritz, J.F., Nazari, H., Balescu, S., Lamothe, M., Salamati, R., Chassemi, A., Shafei, A., Ghorashi, M. and Saidi, A., 2012. Paleoearthquakes of the past 30,000 years along the North Tehran fault (Iran).  J. Geophy. Res., v. 117, B6, B06305. Doi:10.1029/2012JB009147.
-Saberi, E., Yassaghi, A., Madanipour, S. and Djamour, Y., 2016. Estimation of the active Uplift rate using “precise leveling” in the Central Alborz Mountains, Northern Iran, Researches in Earth Sciences, v. 7(1), p. 62-74 (in Persian).
-Solaymani Azad, S., Ritz, J.F. and Abbasi, M.R., 2011. Left-lateral active deformation along the Mosha–North Tehran fault system (Iran); morphotectonics and paleoseismological investigations. Tectonophysics, v. 497, p. 1-14. Doi:10.1016/j.tecto.2010.09.013.
-Stirling, M.W., Litchfield, N.J., Villamor, P., Van Dissen, R.J., Nicol, A., Pettinga, J., Barnes, P., Langridge, R.M., Little, T., Barrell, D. and Mountjoy, J., 2017. The Mw7. 8 2016 Kaikōura earthquake: Surface fault rupture and seismic hazard context. Bulletin of the New Zealand Society for Earthquake Engineering, v. 50(2), p. 73-84.
-Talebian, M., Copley, A.C., Fattahi, M., Ghorashi, M., Jackson, J.A., Nazari, H., Sloan, R.A. and Walker, R.T., 2016. Active faulting within a megacity: the geometry and slip rate of the Pardisan thrust in central Tehran, Iran. Geoph. J. Int., v. 207(3), p. 1688-1699.
-Tatar, M., Jackson, J., Hatzfeld, D. and Bergman, E., 2007a. The 28 May 2004 Baladeh earthquake (Mw 6.2) in the Alborz, Iran, implications for the geology of the South Caspian Basin margin and for the seismic hazard of Tehran. Geoph. J. Int., v. 170, p. 249-261. Doi:10.1111/j.1365-246X.2007.03386.x.
-Tatar, M., Jackson, J., Hatzfeld, D. and Bergman, E., 2007b. The 2004 May 28 Baladeh earthquake (Mw 6.2) in the Alborz, Iran: Overthrusting the South Caspian Basin margin, partitioning of oblique convergence and the seismic hazard of Tehran. Geoph. J. Int., v. 170, p. 249-261, Doi:10.1111/j.1365-246X.2007.03386.x.
-Tchalenko, J.S., Berberian, M., Iranmanesh, H., Baily, M. and Arsovsky, M., 1974. Tectonic framework of the Tehran Region, in Materials for the Study of Seismotectonics of Iran; North-Central Iran: Tehran, Geological Survey of Iran, Report, v. 29, p. 7-46.
-Toké, N.A., Boone, C.G. and Arrowsmith, J.R., 2014. Fault zone regulation, seismic hazard, and social vulnerability in Los Angeles, California: Hazard or urban amenity?. Earth's Future, v. 2(9), p. 440-457. Doi: 10.1002/2014EF000241.
-Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, M., Bayer, R., Tavakoli, F. and Chéry, J., 2004. Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geoph. J. Int., v. 157, p. 381-398. Doi:10.1111/j.1365-246X.2004.02222.x.
-Yang, S. and Mavroeidis, G.P., 2018. Bridges crossing fault rupture zones: A review. Soil Dynamics Earthq. Eng., v. 113, p. 545-571. Doi: 10.1016/j.soildyn.2018.03.027.
-Ziyaabadi, A., 2022. Explaining the historical location of Semiran Citadel as the center of urbanization and civilization in the heart of Alborz mountain range based on archaeological findings (potterys), The Journal of Geography and Regional Planning, Accepted paper (in Persian).
-Zhang, J.Y., Bo, J.S., Xu, G.D. and Huang, J.Y., 2012. Buildings setbacks research from surface-fault-rupture statistical analysis. Applied Mech. Mater., v. 204, p. 2410-2418. Doi: 10.4028/www.scientific.net/AMM.204-208.2410.