تعیین گونه‌های سنگی پتروفیزیکی و تراوایی با استفاده از روش‌های یادگیری ماشین در یک مخزن ناهمگن، جنوب غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زمین‌شناسی نفت و حوضه‌های رسوبی، دانشکده علوم زمین، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

مقدمه
مطالعه و ارزیابی مخازن هیدروکربنی، به عنوان شریان‌های حیاتی تأمین انرژی در دنیای امروز، از اهمیت بسزایی برخوردار است. مهندسان و زمین‌شناسان نفت همواره در تلاش برای درک دقیق‌تر و جامع‌تر این سیستم‌های پیچیده زیرزمینی بوده‌اند. این تلاش‌ها به‌ویژه در مورد مخازن کربناته، به دلیل ویژگی‌های منحصربه‌فرد و چالش‌های خاص آن‌ها، از اهمیت دوچندانی برخوردار است. مخازن کربناته، به دلیل فرآیندهای پیچیده دیاژنتیکی، ناهمگنی‌های ذاتی و ساختارهای شکستگی گسترده، از پیچیده‌ترین انواع مخازن هیدروکربنی به شمار می‌روند. این پیچیدگی‌ها، ارزیابی دقیق خواص پتروفیزیکی و پیش‌بینی رفتار تولیدی آن‌ها را به یک چالش بزرگ تبدیل می‌کند. در این راستا، شناسایی و تعیین گونه‌های سنگی پتروفیزیکی (Petrophysical Rock Types) و ویژگی‌های آن‌ها از جمله تخلخل، تراوایی، اشباع سیالات و توزیع اندازه حفرات، نقشی کلیدی در درک رفتار مخزن و بهینه‌سازی فرآیندهای تولید ایفا می‌کند. گونه‌های سنگی، به عنوان واحدهای بنیادی سازنده مخزن، ویژگی‌های پتروفیزیکی نسبتاً همگنی را در یک حجم مشخص از سنگ نشان می‌دهند. شناسایی و تفکیک این گونه‌ها، امکان مدل‌سازی دقیق‌تر مخزن و پیش‌بینی رفتار آن در شرایط مختلف تولید را فراهم می‌سازد. با این حال، تعیین دقیق گونه‌های سنگی در مخازن کربناته، به دلیل تنوع بالای بافت‌ها، ساختارها و فرآیندهای دیاژنتیکی، نیازمند استفاده از روش‌های پیشرفته و یکپارچه است. روش‌های سنتی ارزیابی مخازن، عمدتاً بر داده‌های مغزه و اطلاعات چاه‌پیمایی تکیه دارند. داده‌های مغزه، اطلاعات ارزشمندی در مورد خواص فیزیکی و شیمیایی سنگ مخزن ارائه می‌دهند، اما تهیه و تحلیل آن‌ها پرهزینه و زمان‌بر است و معمولاً محدود به تعداد کمی از چاه‌ها در میدان نفتی می‌باشد. اطلاعات چاه‌پیمایی، پوشش گسترده‌تری را در میدان فراهم می‌کنند، اما تفسیر آن‌ها نیازمند دانش و تجربه تخصصی است و دقت آن‌ها ممکن است تحت­تأثیر عوامل مختلفی قرار گیرد. به همین دلیل، استفاده از تکنیک‌های نوین مانند یادگیری ماشین و خوشه‌بندی، به عنوان ابزاری قدرتمند برای تحلیل داده‌های مخزنی و استخراج اطلاعات ارزشمند از آن‌ها، مورد توجه روزافزون قرار گرفته است. در این مطالعه، با هدف غلبه بر محدودیت‌های روش‌های سنتی و بهبود دقت ارزیابی مخازن کربناته، از شبکه‌های عصبی خودسازمانده (Self-Organizing Maps) برای خوشه‌بندی داده‌های چاه‌پیمایی و شناسایی الکتروفاسیس‌ها استفاده شده است. این روش، با استفاده از الگوریتم‌های یادگیری بدون نظارت، قادر است الگوهای نهفته در داده‌ها را شناسایی کرده و داده‌های مشابه را در گروه‌های مجزا دسته‌بندی کند.
الکتروفاسیس‌ها، به عنوان واحدهای پتروفیزیکی متمایز در مخزن، ویژگی‌های لاگ نسبتاً یکسانی را نشان می‌دهند و می‌توانند به عنوان نماینده‌ای از گونه‌های سنگی در نظر گرفته شوند. با تطبیق الکتروفاسیس‌های شناسایی شده با داده‌های مغزه و اطلاعات زمین‌شناسی، می‌توان مدل دقیق‌تری از توزیع گونه‌های سنگی در مخزن ایجاد کرد و خواص پتروفیزیکی آن را با دقت بیشتری تخمین زد. هدف نهایی این مطالعه، ارائه یک روش کارآمد و قابل اعتماد برای ارزیابی مخازن کربناته با استفاده از تکنیک‌های یادگیری ماشین و بهبود دقت پیش‌بینی رفتار تولیدی آن‌ها است.
مواد و روش­ها
در این پژوهش، به منظور تعیین گونه‌های سنگی پتروفیزیکی و تخمین تراوایی در مخزن بنگستان، واقع در جنوب غرب ایران، از یک رویکرد یکپارچه شامل روش‌های خوشه‌بندی مبتنی بر یادگیری ماشین و شبکه‌های عصبی مصنوعی استفاده شده است. این رویکرد، با بهره‌گیری از داده‌های چاه‌پیمایی و اطلاعات مغزه، امکان شناسایی دقیق‌تر و کارآمدتر ویژگی‌های مخزن را فراهم می‌سازد. مجموعه داده‌های مورد استفاده در این تحقیق شامل اطلاعات نه حلقه چاه در میدان نفتی اهواز است. از این تعداد، پنج حلقه چاه دارای داده‌های مغزه (شامل اطلاعات تخلخل و تراوایی) بوده و به عنوان چاه‌های مرجع برای آموزش و اعتبارسنجی مدل‌ها مورد استفاده قرار گرفته‌اند. لاگ‌های چاه‌پیمایی مورد استفاده در این مطالعه شامل لاگ‌های چگالی (RHOB)، نوترون (NPHI)، تخلخل موثر (PHIE)، زمان عبور صوتی (DT)، و گاما (GR) می‌باشند. این لاگ‌ها، به دلیل پوشش گسترده و حساسیت به تغییرات پتروفیزیکی، به عنوان ورودی‌های اصلی برای الگوریتم‌های خوشه‌بندی و تخمین تراوایی انتخاب شده‌اند. به منظور تعیین گونه‌های سنگی پتروفیزیکی، از روش خوشه‌بندی شبکه‌های عصبی خودسازمانده (SOM) استفاده شده است. این روش، با استفاده از یک الگوریتم یادگیری بدون نظارت، قادر است داده‌های مشابه را در گروه‌های مجزا دسته‌بندی کند. در این مطالعه، داده‌های چاه‌پیمایی مربوط به چاه‌های مرجع به عنوان ورودی به شبکه SOM داده شده و پس از آموزش شبکه، داده‌ها به 25 خوشه اولیه تقسیم شده‌اند. سپس، با تحلیل ویژگی‌های پتروفیزیکی هر خوشه و تطبیق آن‌ها با اطلاعات مغزه و واحدهای جریانی هیدرولیکی (Hydraulic Flow Units)، خوشه‌های مشابه با یکدیگر ادغام شده و در نهایت، پنج گونه سنگی پتروفیزیکی متمایز شناسایی شده‌اند. واحدهای جریانی هیدرولیکی، به عنوان معیاری برای ارزیابی کیفیت مخزن، با استفاده از روش لگاریتم شاخص زون جریان (Log FZI) تعیین شده‌اند. این روش، با استفاده از داده‌های تخلخل و تراوایی مغزه، امکان تفکیک واحدهای جریانی با ویژگی‌های هیدرولیکی متفاوت را فراهم می‌سازد. تطبیق الکتروفاسیس‌های شناسایی شده با واحدهای جریانی هیدرولیکی، به عنوان یک روش اعتبارسنجی، به اطمینان از صحت و دقت خوشه‌بندی کمک کرده است. به منظور تخمین تراوایی در مخزن مورد مطالعه، از شبکه‌های عصبی مصنوعی (ANN) استفاده شده است. این روش، با استفاده از یک الگوریتم یادگیری با نظارت، قادر است ارتباط بین داده‌های ورودی (لاگ‌های چاه‌پیمایی) و داده‌های خروجی (تراوایی مغزه) را یاد بگیرد و بر اساس آن، تراوایی را در سایر نقاط مخزن تخمین بزند. در این مطالعه، از یک شبکه عصبی پرسپترون چندلایه (Multi-Layer Perceptron) با یک لایه پنهان استفاده شده است. داده‌های چاه‌های مرجع به دو مجموعه آموزشی و آزمایشی تقسیم شده‌اند. مجموعه آموزشی برای آموزش شبکه و تنظیم وزن‌های آن استفاده شده و مجموعه آزمایشی برای ارزیابی عملکرد شبکه و تعیین دقت تخمین تراوایی مورد استفاده قرار گرفته است. تراوایی، به دو روش جداگانه تخمین زده شده است: 1) تخمین تراوایی برای کل اینتروال مخزن بدون در نظر گرفتن گونه‌های سنگی، و 2) تخمین تراوایی برای هر یک از گونه‌های سنگی شناسایی شده به صورت جداگانه. مقایسه نتایج این دو روش، امکان ارزیابی تأثیر خوشه‌بندی داده‌ها بر دقت تخمین تراوایی را فراهم می‌سازد. به منظور ارزیابی عملکرد مدل‌های خوشه‌بندی و تخمین تراوایی، از معیارهای آماری مختلفی استفاده شده است. برای ارزیابی دقت خوشه‌بندی، از شاخص Silhouette و برای ارزیابی دقت تخمین تراوایی، از معیارهای ضریب همبستگی (R) و مجذور میانگین مربعات خطا (RMSE) استفاده شده است. این معیارها، امکان مقایسه عملکرد مدل‌های مختلف و تعیین بهترین مدل برای تخمین تراوایی در مخزن مورد مطالعه را فراهم می‌سازند.
نتایج و بحث
در این پژوهش، با استفاده از روش‌های یادگیری ماشین، موفق به شناسایی پنج گونه سنگی پتروفیزیکی متمایز در مخزن بنگستان شدیم. این گونه‌های سنگی، با استفاده از الگوریتم خوشه‌بندی SOM و تطبیق با داده‌های مغزه و واحدهای جریانی هیدرولیکی، به دقت تعیین شدند. نتایج خوشه‌بندی نشان داد که هر یک از این گونه‌های سنگی، دارای ویژگی‌های پتروفیزیکی منحصر به فردی هستند که بر رفتار جریانی سیال در مخزن تأثیرگذار است. گونه‌های ‌‌‌سنگی 1 و 2 دارای بهترین کیفیت مخزنی، گونه‌سنگی 3 کیفیت مخزنی متوسط و گونه‌‌های سنگی 4 و 5 دارای پایین‌ترین کیفیت مخزنی بودند. تطبیق الکتروفاسیس‌های شناسایی شده با واحدهای جریانی هیدرولیکی (FZI) نشان داد که همبستگی بالایی بین این دو وجود دارد. این همبستگی، نشان می‌دهد که روش خوشه‌بندی SOM به خوبی قادر به تفکیک واحدهای جریانی با ویژگی‌های هیدرولیکی متفاوت بوده است. نتایج تخمین تراوایی با استفاده از شبکه‌های عصبی مصنوعی (ANN) نشان داد که این روش، قادر به تخمین تراوایی با دقت قابل قبولی است. مقایسه نتایج تخمین تراوایی با داده‌های مغزه نشان داد که ضریب همبستگی (R) بین مقادیر تخمین زده شده و مقادیر واقعی، در حدود 98/0 است. همچنین، مجذور میانگین مربعات خطا (RMSE) در حدود 0778/0 است. مقایسه نتایج تخمین تراوایی برای کل اینتروال مخزن با نتایج تخمین تراوایی برای هر یک از گونه‌های سنگی به صورت جداگانه نشان داد که خوشه‌بندی داده‌ها، تأثیر مثبتی بر دقت تخمین تراوایی دارد. به عبارت دیگر، تخمین تراوایی برای هر یک از گونه‌های سنگی به صورت جداگانه، دقت بالاتری نسبت به تخمین تراوایی برای کل اینتروال مخزن دارد. این نتیجه، نشان می‌دهد که در نظر گرفتن ویژگی‌های پتروفیزیکی هر یک از گونه‌های سنگی، می‌تواند به بهبود دقت مدل‌های تخمین تراوایی کمک کند. نتایج این پژوهش، نشان می‌دهد که استفاده از روش‌های یادگیری ماشین، می‌تواند به بهبود دقت و کارایی ارزیابی مخازن کربناته کمک کند. روش خوشه‌بندی SOM، به عنوان یک ابزار قدرتمند برای شناسایی گونه‌های سنگی پتروفیزیکی، امکان مدل‌سازی دقیق‌تر مخزن و پیش‌بینی رفتار تولیدی آن را فراهم می‌سازد. همچنین، شبکه‌های عصبی مصنوعی (ANN)، به عنوان یک روش کارآمد برای تخمین تراوایی، امکان ارزیابی کمی ویژگی‌های مخزن و بهینه‌سازی فرآیندهای تولید را فراهم می‌سازد. با این حال، لازم به ذکر است که نتایج این پژوهش، محدود به مخزن بنگستان در میدان نفتی اهواز است و ممکن است قابل تعمیم به سایر مخازن کربناته نباشد. برای تعمیم نتایج این پژوهش به سایر مخازن، نیاز به انجام مطالعات بیشتر و بررسی داده‌های مربوط به آن مخازن است.
نتیجه­گیری
در این پژوهش، یک رویکرد یکپارچه مبتنی بر یادگیری ماشین برای شناسایی گونه‌های سنگی پتروفیزیکی و تخمین تراوایی در مخزن کربناته بنگستان ارائه شد. با استفاده از الگوریتم خوشه‌بندی SOM، پنج گونه سنگی متمایز شناسایی شدند که هر کدام ویژگی‌های پتروفیزیکی و رفتارهای جریانی منحصر به فردی داشتند. مدل‌های ANN، با آموزش جداگانه برای هر گونه سنگی، توانستند تراوایی را با دقت قابل قبولی تخمین بزنند. نتایج نشان داد که خوشه‌بندی داده‌ها و در نظر گرفتن ویژگی‌های پتروفیزیکی هر گونه سنگی، به طور قابل توجهی دقت تخمین تراوایی را بهبود می‌بخشد. این رویکرد، می‌تواند به عنوان یک ابزار کارآمد برای ارزیابی مخازن کربناته و بهینه‌سازی فرآیندهای تولید مورد استفاده قرار گیرد. این پژوهش به طور قابل توجهی درک ما از ویژگی‌های مخزن بنگستان را بهبود بخشید و می‌تواند به عنوان مبنایی برای توسعه مدل‌های پیشرفته‌تر در ارزیابی مخازن هیدروکربنی مورد استفاده قرار گیرد. نتایج این تحقیق همچنین می‌تواند به بهینه‌سازی فرآیندهای تولید و مدیریت منابع نفتی کمک کند و زمینه‌ساز مطالعات آینده در این حوزه شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of petrophysical rock types and permeability using machine learning methods in a heterogeneous reservoir, southwest of the Iran

نویسندگان [English]

  • Fatemeh Bahrami
  • Iman Zahmatkesh
Department of Petroleum Geology and Sedimentary Basins, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Introduction
The study and evaluation of hydrocarbon reservoirs, as vital arteries for energy supply in today's world, are of paramount importance. Petroleum engineers and geologists are constantly striving to understand these complex subsurface systems more accurately and comprehensively. These efforts are particularly significant for carbonate reservoirs, due to their unique characteristics and specific challenges. Carbonate reservoirs, owing to complex diagenetic processes, inherent heterogeneities, and extensive fracture structures, are among the most intricate types of hydrocarbon reservoirs. These complexities make accurate evaluation of petrophysical properties and prediction of their production behavior a major challenge. In this context, identifying and determining petrophysical rock types and their characteristics, including porosity, permeability, fluid saturation, and pore size distribution, play a key role in understanding reservoir behavior and optimizing production processes. Rock types, as fundamental building blocks of the reservoir, exhibit relatively homogeneous petrophysical properties within a defined volume of rock. Identifying and differentiating these types enables more accurate reservoir modeling and prediction of its behavior under different production conditions. However, precise determination of rock types in carbonate reservoirs, due to the high diversity of textures, structures, and diagenetic processes, requires the use of advanced and integrated methods. Traditional reservoir evaluation methods rely primarily on core data and well log information. Core data provides valuable information about the physical and chemical properties of the reservoir rock, but its preparation and analysis are costly and time-consuming, and it is usually limited to a small number of wells in the oil field. Well log information provides broader coverage in the field, but its interpretation requires specialized knowledge and experience, and its accuracy may be affected by various factors. For this reason, the use of modern techniques such as machine learning and clustering has received increasing attention as a powerful tool for analyzing reservoir data and extracting valuable information from it.
In this study, with the aim of overcoming the limitations of traditional methods and improving the accuracy of carbonate reservoir evaluation, self-organizing maps (SOM) have been used to cluster well log data and identify electrofacies. Using unsupervised learning algorithms, this method is able to identify hidden patterns in the data and classify similar data into separate groups. Electrofacies, as distinct petrophysical units in the reservoir, exhibit relatively uniform log characteristics and can be considered as representatives of rock types. By matching the identified electrofacies with core data and geological information, a more accurate model of the distribution of rock types in the reservoir can be created and its petrophysical properties can be estimated with greater precision. The ultimate goal of this study is to provide an efficient and reliable method for evaluating carbonate reservoirs using machine learning techniques and improving the accuracy of predicting their production behavior.
Materials and Methods
In this study, an integrated approach comprising machine learning-based clustering methods and artificial neural networks was employed to determine petrophysical rock types and estimate permeability in the Bangestan reservoir, located in southwestern Iran. This approach, utilizing well log data and core information, enables more accurate and efficient identification of reservoir characteristics.
The dataset used in this research includes information from nine wells in the Ahvaz oil field. Among these, five wells have core data (including porosity and permeability information) and have been used as reference wells for training and validating the models. The well logs used in this study include density (RHOB), neutron (NPHI), effective porosity (PHIE), sonic transit time (DT), and gamma (GR) logs. These logs, due to their wide coverage and sensitivity to petrophysical changes, have been selected as the main inputs for clustering and permeability estimation algorithms.
To determine petrophysical rock types, the Self-Organizing Maps (SOM) clustering method was used. This method, using an unsupervised learning algorithm, is able to classify similar data into separate groups. In this study, well log data from reference wells were input into the SOM network, and after training the network, the data were divided into 25 initial clusters. Then, by analyzing the petrophysical characteristics of each cluster and matching them with core information and hydraulic flow units, similar clusters were merged and, finally, five distinct petrophysical rock types were identified.
Hydraulic flow units, as a criterion for evaluating reservoir quality, were determined using the logarithm of the flow zone indicator (Log FZI) method. This method, using core porosity and permeability data, enables the separation of flow units with different hydraulic characteristics. Matching the identified electrofacies with hydraulic flow units, as a validation method, helped ensure the accuracy and precision of the clustering.
To estimate permeability in the studied reservoir, artificial neural networks (ANN) were used. This method, using a supervised learning algorithm, is able to learn the relationship between input data (well logs) and output data (core permeability) and, based on that, estimate permeability in other parts of the reservoir. In this study, a multi-layer perceptron neural network with a hidden layer was used. The reference well data were divided into training and testing sets. The training set was used to train the network and adjust its weights, and the testing set was used to evaluate the network's performance and determine the accuracy of permeability estimation.
Permeability was estimated in two separate ways: 1) permeability estimation for the entire reservoir interval regardless of rock types, and 2) permeability estimation for each of the identified rock types separately. Comparing the results of these two methods allows for evaluating the impact of data clustering on the accuracy of permeability estimation.
To evaluate the performance of the clustering and permeability estimation models, various statistical measures were used. To evaluate clustering accuracy, the Silhouette index was used, and to evaluate permeability estimation accuracy, the correlation coefficient (R) and root mean squared error (RMSE) measures were used. These measures enable comparison of the performance of different models and determination of the best model for permeability estimation in the studied reservoir.
 
Results and Discussion
In this study, we successfully identified five distinct petrophysical rock types in the Bangestan reservoir using machine learning methods. These rock types were accurately determined using the SOM clustering algorithm and matching with core data and hydraulic flow units. The clustering results showed that each of these rock types has unique petrophysical characteristics that affect fluid flow behavior in the reservoir. Rock types 1 and 2 had the best reservoir quality, rock type 3 had the medium reservoir quality and rock types 4 and 5 had the lowest reservoir quality.
Matching the identified electrofacies with hydraulic flow units (FZI) showed a high correlation between the two. This correlation indicates that the SOM clustering method was well able to separate flow units with different hydraulic characteristics.
The results of permeability estimation using artificial neural networks (ANN) showed that this method is able to estimate permeability with acceptable accuracy. Comparison of permeability estimation results with core data showed that the correlation coefficient (R) between the estimated values and the actual values is around 0.9804. Also, the root mean square error (RMSE) is around 0.0778.
Comparing the results of permeability estimation for the entire reservoir interval with the results of permeability estimation for each of the rock types separately showed that data clustering has a positive effect on the accuracy of permeability estimation. In other words, permeability estimation for each of the rock types separately has higher accuracy than permeability estimation for the entire reservoir interval. This result 
shows that considering the petrophysical characteristics of each of the rock types can help improve the accuracy of permeability estimation models.
The results of this study show that the use of machine learning methods can help improve the accuracy and efficiency of carbonate reservoir evaluation. The SOM clustering method, as a powerful tool for identifying petrophysical rock types, enables more accurate reservoir modeling and prediction of its production behavior. Also, artificial neural networks (ANN), as an efficient method for estimating permeability, enable quantitative evaluation of reservoir characteristics and optimization of production processes.
However, it should be noted that the results of this study are limited to the Bangestan reservoir in the Ahvaz oil field and may not be generalizable to other carbonate reservoirs. To generalize the results of this study to other reservoirs, more studies and examination of data related to those reservoirs are needed.
 
Conclusion
In this study, an integrated machine learning-based approach was presented for identifying petrophysical rock types and estimating permeability in the Bangestan carbonate reservoir. Using the SOM clustering algorithm, five distinct rock types were identified, each with unique petrophysical characteristics and flow behaviors. ANN models, trained separately for each rock type, were able to estimate permeability with acceptable accuracy. The results showed that data clustering and considering the petrophysical characteristics of each rock type significantly improved the accuracy of permeability estimation. This approach can be used as an efficient tool for evaluating carbonate reservoirs and optimizing production processes.
This study significantly enhances our understanding of the Bangestan reservoir characteristics and can serve as a foundation for developing more advanced models in hydrocarbon reservoir evaluation. The findings of this research may also contribute to optimizing production processes and managing oil resources, paving the way for future studies in this field.
 
 

کلیدواژه‌ها [English]

  • Electrofacies
  • Neural network
  • Bangestan reservoir
  • Clustering
  • Hydraulic flow unit
  • Self-organizing map
Abbaszadeh, M., Fujii, H. and Fujimoto, F.J.S.F.E., 1996. Permeability prediction by hydraulic flow units—theory and applications, v. 11(04), p. 263-271.
Acosta, L., Marin, E., Labastidas, E., Bello, J., Jimenez, J., Cordoba, P., Pascual, J., Auxiette, G., Gou, Y. and Thorsen, B., 2005. Reservoir Study V9 of El Furrial Field, Venezuela. SPE Latin American and Caribbean Petroleum Engineering Conference, OnePetro.
Ali-Nandalal, J. and Gunter, G., 2003. Characterising reservoir performance for the mahogany 20 gas sand based on petrophysical and rock typing methods. SPE Latin American and Caribbean Petroleum Engineering Conference, OnePetro.
Aminian, K., Ameri, S., Oyerokun, A. and Thomas, B., 2003. Prediction of flow units and permeability using artificial neural networks. SPE Western Regional/AAPG Pacific Section Joint Meeting, OnePetro.
Aplin, G.F., Dawans, J.M.L. and Sapru, A.K., 2002. New insights from old data: identification of rock types and permeability prediction within a heterogeneous carbonate reservoir using diplog and openhole log data. Abu Dhabi International Petroleum Exhibition and Conference, OnePetro.
Bear, J., 1972. Dynamics of fluids in porous media. Elsevier, 757 p.
Cassano, E.N., Lynch, A.H., Cassano, J.J. and Koslow, M.R.J.C.R., 2006. Classification of synoptic patterns in the western Arctic associated with extreme events at Barrow, Alaska, USA, v. 30(2), p. 83-97.
Coléou, T., Poupon M. and Azbel, K.J.T.L.E., 2003. Unsupervised seismic facies classification: A review and comparison of techniques and implementation, v. 22(10), p. 942-953.
Dunham, R.J., 1962 Classification of Carbonate Rocks According to Depositional Texture. In: Ham, W.E., Ed., Classification of Carbonate Rocks, AAPG, Tulsa, p. 108-121.
Davies, D. and Vessell, R., 1996. Identification and distribution of hydraulic flow units in a heterogeneous carbonate reservoir: North Robertson Unit, west Texas. Permian Basin Oil and Gas Recovery Conference, OnePetro.
Ebanks, W.J., 1987. Flow unit concept-integrated approach to reservoir description for engineering projects, v. 71, p. (CONF-870606-).
Elkatatny, S., Mahmoud, M., Tariq, Z. and Abdulraheem, A.J.N.C., 2018. New insights into the prediction of heterogeneous carbonate reservoir permeability from well logs using artificial intelligence network, v. 30, p. 2683-2673.
Fayos, J. and Fayos, C.J.P.O., 2007. Wind data mining by Kohonen neural networks, v. 2(2), p. e210.
Gholami, R., Moradzadeh, A., Maleki, S., Amiri, S. and Hanachi, J.J.J.O.P.S., 2014. "Applications of artificial intelligence methods in prediction of permeability in hydrocarbon reservoirs, v. 122, p. 643-656.
Gunter, G., Finneran, J., Hartmann, D. and Miller, J., 1997. Early determination of reservoir flow units using an integrated petrophysical method. SPE annual technical conference and exhibition, OnePetro.
Huang, Z., Shimeld, J., Williamson, M. and Katsube, J.J.G., 1996. Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada, v. 61(2), p. 422-436.
Matinkia, M., Hashami, R., Mehrad, M., Hajsaeedi, M.R. and Velayati, A.J.P., 2023. Prediction of permeability from well logs using a new hybrid machine learning algorithm, v. 9(1), p. 108-123.
Mohaghegh, S.J.J.O.P.T., 2000. Virtual-intelligence applications in petroleum engineering: Part 1—Artificial neural networks, v. 52(09), p. 64-73.
Mukherjee, A.J.J.O.C.i.C.E., 1997. Self-organizing neural network for identification of natural modes, v. 11(1), p. 74-77.
Porras, J., Barbato, R. and Khazen, L., 1999. Reservoir flow units: A comparison between three different models in the Santa Barbara and Pirital fields, North Monagas Area, Eastern Venezuela Basin. Latin American and Caribbean petroleum engineering conference, OnePetro.
Rushing, J.A., Newsham, K.E. and Blasingame, T.A., 2008. Rock typing—Keys to understanding productivity in tight gas sands. SPE Unconventional Reservoirs Conference, OnePetro.
Rahsepar, A., Kadkhodaie, A. and Bidhendi, M., 2016. Determination of reservoir electrofacies using clustering methods (MRGC, AHC, SOM, DYNCLUST) throughout ARAB part in SALMAN oil field 2S-05 well. Journal of Petroleum Research, v. 26(95-2), p. 107-117.
Serra, O. and Sulpice, L., 1975. Sedimentological Analysis of Shale-Sand Series from Well Logs. SPWLA 16th Annual Logging Symposium.
Serra, O.T. and Abbott, H.J.S.O.P.E.J., 1982. The contribution of logging data to sedimentology and stratigraphy, v. 22(01), p. 117-131.
Strecker, U. and Uden, R.J.T.L.E., 2002. Data mining of 3D poststack seismic attribute volumes using Kohonen self-organizing maps, v. 21(10), p. 1032-1037.
Sfidari, E., Kadkhodaie-Ilkhchi, A. and Najjari, S.J.J.O.P.S., 2012. Comparison of intelligent and statistical clustering approaches to predicting total organic carbon using intelligent systems, v. 86, p. 190-205.
Urang, J.G., Ebong, E.D., Akpan, A.E. and Akaerue, E.I.J.J.O.A.G., 2020. A new approach for porosity and permeability prediction from well logs using artificial neural network and curve fitting techniques: A case study of Niger Delta, Nigeria, v. 183, p. 104207.