طبقه‌بندی نوین اقلیمی یاخته مبنای ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

چکیده

مقدمه
اقلیم یکی از مؤلفه‌های اساسی سامانه زمین به ‌شمار می‌رود که مجموعه‌ای گسترده از فرایندهای محیط‌زیستی، بوم‌شناختی و اجتماعی- اقتصادی را کنترل می‌کند. تنوع عناصر اقلیمی از جمله دما، بارش، رطوبت، باد و تابش خورشیدی نقش محوری در شکل‌دهی به الگوهای اقلیمی منطقه‌ای و جهانی دارد. این تغییرپذیری منجر به شکل‌گیری نواحی اقلیمی متمایزی می‌شود که هر یک دارای ویژگی‌های خاص محیط‌زیستی و اجتماعی- اقتصادی هستند. در طول تاریخ، مطالعه اقلیم توجه دانشمندان، پژوهشگران و سیاست‌گذاران را به خود جلب کرده است و سابقه آن به تمدن‌های باستانی بازمی‌گردد که در تلاش برای درک پدیده‌های جوی به‌منظور بهبود کشاورزی، ناوبری و برنامه‌ریزی اسکان بوده‌اند. در دوران معاصر و با شدت یافتن تغییرات اقلیمی جهانی، اهمیت درک دقیق و طبقه‌بندی علمی اقلیم‌های منطقه‌ای به‌ شدت افزایش یافته است. با این حال، ماهیت متنوع عناصر اقلیمی همراه با تغییرپذیری مکانی و زمانی آن‌ها، انجام تحلیل‌های یکپارچه و همزمان را با چالش‌های قابل توجهی مواجه می‌سازد. این چالش‌ها در مطالعات منطقه‌ای که گستره‌های جغرافیایی وسیع، ویژگی‌های توپوگرافی متنوع و کیفیت متغیر داده‌ها از ایستگاه‌ها یا سامانه‌های پایش مختلف را در بر می‌گیرد، شدت می‌یابند. به‌ دنبال آن، طبقه‌بندی اقلیمی به‌عنوان یک ابزار علمی ضروری مطرح می‌شود که با هدف ساده‌سازی این پیچیدگی، مناطق مختلف را بر اساس شاخص‌های آماری و محیط‌زیستی به نواحی اقلیمی منسجم تقسیم می‌کند. این نوع طبقه‌بندی‌ها زیربنای کاربردهای مختلفی همچون منطقه‌بندی بوم‌شناختی، مدیریت منابع آب، برنامه‌ریزی شهری و راهبردهای سازگاری با تغییر اقلیم هستند. در کشورهایی مانند ایران که تنوع اقلیمی ناشی از تفاوت ارتفاع، نزدیکی به دریاها و تعامل با سامانه‌های جوی مختلف بسیار برجسته است، نیاز به طبقه‌بندی دقیق و خاص منطقه‌ای اقلیم، اهمیتی دوچندان می‌یابد. مطالعات پیشین درباره اقلیم ایران عمدتاً بر سامانه‌های سنتی طبقه‌بندی مانند کوپن-گایگر، دمارتهن یا امبرژه تکیه داشته‌اند که با وجود مزایای خود، اغلب در شناسایی تغییرات میکرو اقلیمی محلی و تأثیرات پویا و متغیر توپوگرافی ناتوان هستند. افزون بر این، این طبقه‌بندی‌ها معمولاً مبتنی بر میانگین‌های بلندمدت بوده و روندهای اخیر ناشی از تغییر اقلیم جهانی را در نظر نمی‌گیرند. پژوهش حاضر در راستای رفع این کاستی‌ها، با اتخاذ رویکردی داده‌محور و صریح از نظر مکانی، به طبقه‌بندی اقلیم ایران بر اساس مشاهدات بلندمدت هواشناسی پرداخته است. با تلفیق روش‌های پیشرفته ژئواستاتیکی و تحلیل‌های خوشه‌ای، این مطالعه سعی دارد نواحی اقلیمی منسجمی در سطح کشور ترسیم نماید که بازتاب‌دهنده تأثیرات اقلیمی در مقیاس‌های بزرگ و کوچک باشند.
نتایج این پژوهش نه تنها به بهبود طبقه‌بندی اقلیم ایران کمک می‌کند بلکه مبنای مهمی برای ارزیابی روندهای اقلیمی آتی و هدایت تصمیم‌گیری در حوزه‌هایی مانند کشاورزی، مدیریت منابع آب، گردشگری و توسعه شهری فراهم می‌سازد.
مواد و روش­ها
منطقه مورد مطالعه شامل کل قلمرو ایران است که در جنوب غربی آسیا واقع شده و با توپوگرافی پیچیده‌ای همچون رشته‌کوه‌های البرز و زاگرس، بیابان‌های وسیعی مانند دشت کویر و دشت لوت و نواحی ساحلی در امتداد دریای خزر، خلیج فارس و دریای عمان مشخص می‌شود. این تنوع ژئومورفولوژیکی به‌طور قابل توجهی بر توزیع متغیرهای اقلیمی در سراسر کشور تأثیر می‌گذارد. در این پژوهش از داده‌های هواشناسی سطح زمین از ۹۲ ایستگاه همدیدی که توسط سازمان هواشناسی ایران گردآوری شده‌اند و دوره‌ای ۴۰ ساله از سال ۱۹۸۰ تا ۲۰۱۹ را پوشش می‌دهند، استفاده شده است. پارامترهای انتخابی شامل دمای حداقل روزانه، دمای حداکثر، بارش تجمعی و رطوبت نسبی بودند که هرکدام نقشی اساسی در تعیین شرایط اقلیمی ایفا می‌کنند. برای تولید سطوح پیوسته اقلیمی از داده‌های نقطه‌ای، از روش درون‌یابی ژئواستاتیکی کوکریجینگ استفاده شد. این روش امکان برآورد متغیرهای اقلیمی توزیع‌ شده در فضا را از طریق لحاظ کردن متغیرهای اصلی و فرعی فراهم می‌سازد و دقت پیش‌بینی مکانی را افزایش می‌دهد. نتایج درون‌یابی با استفاده از روش‌های اعتبارسنجی متقاطع بررسی شدند تا از صحت و کاهش سوگیری مکانی اطمینان حاصل شود. برای طبقه‌بندی، از روش خوشه‌بندی چندمتغیره استفاده شد. در ابتدا همه متغیرها نرمال‌سازی شدند تا یکنواختی مقیاس‌ها حفظ و از تسلط یک متغیر خاص جلوگیری شود. سپس از فاصله اقلیدسی برای محاسبه ماتریس ناهمگونی بین مشاهدات استفاده گردید. روش خوشه‌بندی سلسله‌مراتبی با پیوند وارد (Ward) به‌ کار گرفته شد که واریانس درون هر خوشه را به حداقل می‌رساند. برای تعیین تعداد بهینه خوشه‌ها (یعنی نواحی اقلیمی)، شاخص‌های اعتبارسنجی گوناگونی مانند شاخص دیویس- بولدین و نمره سیلوئت ارزیابی شدند. تحلیل‌های فضایی و مصورسازی داده‌ها در محیط‌های GIS  مانند ArcGIS و QGIS انجام شد که امکان تلفیق داده‌های اقلیمی با مدل‌های ارتفاعی، نقشه‌های پوشش زمین و شبکه‌های هیدروگرافی را فراهم ساخت. این فرایند موجب درک بهتر روابط فضایی بین نواحی اقلیمی و ویژگی‌های فیزیوگرافیکی شد.
نتایج و بحث
توزیع فضایی متغیرهای اقلیمی در ایران ناهمگونی قابل توجهی را نشان می‌دهد که بازتاب‌دهنده تعامل عرض جغرافیایی، ارتفاع، مجاورت با توده‌های آبی و تأثیر سامانه‌های جوی و الگوهای باد غالب است. تحلیل‌ها نشان داد:
- دمای هوا: بیشینه دما گرادیانی مشخص از شمال به جنوب و از غرب به شرق دارد. مناطق جنوبی و جنوب‌شرقی مانند سیستان‌ و ‌بلوچستان، کرمان و بخش‌هایی از خوزستان بیشترین دماها را با دمای بالای ۴۵ درجه سانتی‌گراد در تابستان تجربه می‌کنند. در مقابل، استان‌های شمال‌غربی مانند آذربایجان غربی و کردستان که تحت­تأثیر ارتفاعات بالاتر و توده‌های هوای قاره‌ای هستند، کمترین دماها را داشته و در زمستان‌ها دمای هوا اغلب زیر صفر است.
- بارش: الگوهای بارشی به‌طور عمده تحت­تأثیر ارتفاع و موانع کوهستانی قرار دارند. بیشترین بارش در نوار جنوبی دریای خزر و دامنه‌های غربی زاگرس ثبت شده است. این مناطق از توده‌های هوای مرطوب خزر و مدیترانه‌ای بهره‌مند هستند. در مقابل، بخش‌های مرکزی و جنوب‌شرقی ایران شرایط فوق‌خشکی داشته و بارندگی سالانه آن‌ها اغلب زیر ۱۰۰ میلی‌متر است.
- رطوبت: رطوبت نسبی در نواحی ساحلی به‌ویژه نوار شمالی خزر به ‌دلیل تأثیرات دریایی بسیار بالاست. در نواحی بیابانی داخلی، مقدار رطوبت پایین بوده و به‌ دلیل نرخ تبخیر بالا و پوشش گیاهی محدود، شدت خشکی افزایش می‌یابد.
از طریق تحلیل خوشه‌ای، ایران به ده ناحیه اقلیمی عمده تقسیم شد که هر کدام ویژگی‌های اقلیمی متمایزی دارند:
۱) ساحلی خزر غربی - بارش بالا  >۱۱۰۰ میلی‌متر، زمستان‌های ملایم، تابستان‌های معتدل
۲) ارتفاعات زاگرس - بارش متوسط و زمستان‌های سرد، تنوع بالای توپوگرافی
۳) سرد شمال‌غربی - زمستان‌های طولانی و سرد همراه با بارش متوسط
۴) خشک مرکزی - بارش کم <۱۰۰ میلی‌متر، دامنه دمایی وسیع
۵) ارتفاعات شرقی - ارتفاع متوسط، رطوبت پایین، خنک‌تر از بیابان‌های مجاور
) خشک جنوب‌شرقی - دمای بالا >۲۵ درجه میانگین سالانه، بارندگی اندک
۷) نیمه‌خشک کرمان - سیستان  -  منطقه انتقالی با بارش متغیر و دماهای شدید
۸) ساحلی جنوبی - تأثیر دریایی خلیج فارس، تابستان‌های گرم و مرطوب
۹) نیمه‌مرطوب خراسان - تحت تأثیر توده‌های هوای شمالی، بارش متوسط
۱۰) حاشیه فلات مرکزی - منطقه گذار با نشانه‌های اقلیمی ترکیبی
ارتفاع و پیچیدگی توپوگرافی به‌عنوان عوامل اصلی در شکل‌دهی به تنوع اقلیمی ظاهر شدند. رشته‌کوه‌های البرز و زاگرس به‌عنوان موانع اصلی جریان‌های هوا عمل کرده و با ایجاد سایه بارشی، به توسعه میکرو اقلیم‌ها کمک می‌کنند. این ویژگی‌ها توضیح می‌دهند که چرا حتی نواحی واقع در عرض جغرافیایی مشابه می‌توانند اقلیم‌های کاملاً متفاوتی داشته باشند؛ همان‌گونه که در جنوب ایران برخی نواحی گرم و مرطوب و برخی گرم و خشک هستند. این طبقه‌بندی همچنین تأثیر سامانه‌های جوی مقیاس بزرگ مانند جریان جتی جنب‌حاره‌ای، سیکلون‌های مدیترانه‌ای و نفوذ موسمی هند را نشان داد که به‌طور دوره‌ای بخش‌هایی از ایران را تحت­تأثیر قرار داده و به نوسانات بارشی فصلی و افراط‌های بین‌سالی منجر می‌شوند.
نتیجه­گیری
این مطالعه چارچوبی نوین و داده‌محور برای طبقه‌بندی اقلیم ایران بر پایه سوابق مشاهداتی بلندمدت و تحلیل‌های فضایی پیشرفته ارائه داده است. با تلفیق داده‌های هواشناسی سطح زمین از ۹۲ ایستگاه همدیدی در بازه ۴۰ ساله و بهره‌گیری از روش‌های ژئواستاتیکی و خوشه‌بندی، پژوهش حاضر موفق به ترسیم ده ناحیه اقلیمی متمایز در سراسر کشور شده است. این طبقه‌بندی نه تنها بازتاب‌دهنده الگوهای چرخش جو در مقیاس کلان است، بلکه تأثیرات برجسته توپوگرافی، ارتفاع و نزدیکی به منابع آبی را که به توسعه میکرو اقلیم‌ها منجر می‌شوند نیز در نظر گرفته است. در میان نواحی شناسایی‌شده، منطقه خشک مرکز- شرق گسترده‌ترین ناحیه بوده که حدود یک‌سوم کشور را پوشش می‌دهد و با شرایط گرم، خشک و بارندگی سالانه اندک (~۹۰ میلی‌متر) مشخص می‌شود. در مقابل، ناحیه ساحلی خزر غربی کوچک‌ترین منطقه اقلیمی (حدود 44/0 ٪ از مساحت کشور) و مرطوب‌ترین ناحیه با بیش از ۱۱۳۷ میلی‌متر بارش در سال است. این تضاد شدید نشان‌دهنده ناهمگونی اقلیمی ایران است که توسط گرادیان ارتفاع، سامانه‌های باد و تعاملات خشکی - دریا هدایت می‌شود. افزون بر این، مطالعه حاضر گرادیان‌های دما و بارش را در سراسر کشور نشان داد: دما عموماً از شمال به جنوب و از غرب به شرق افزایش یافته، در حالی که بارش به‌طور معکوس از جنوب به شمال و از شرق به غرب افزایش می‌یابد. منطقه جنوب‌شرقی به‌عنوان گرم‌ترین ناحیه با دمای میانگین سالانه بالای ۲۵ درجه سانتی‌گراد شناسایی شد، در حالی که ارتفاعات شمال‌غربی آذربایجان و کردستان سردترین شرایط را با میانگین دمای سالانه حدود ۱۲ درجه داشتند. یکی از دستاوردهای مهم این پژوهش، رفع محدودیت‌های روش‌های سنتی طبقه‌بندی اقلیمی از طریق استفاده از تکنیک‌های مدلسازی مکانی با وضوح بالا بود. استفاده از روش کوکریجینگ موجب کاهش خطاهای معمول در داده‌های ایستگاهی نقطه‌ای شد و روش خوشه‌بندی نیز امکان شناسایی نواحی انتقالی اقلیمی را که در طبقه‌بندی‌های کلاسیک مانند کوپن یا امبرژه نادیده گرفته می‌شوند، فراهم ساخت. پیامدهای این پژوهش بسیار گسترده است. شناسایی دقیق نواحی اقلیمی، پایه‌ای برای تصمیم‌گیری‌های آگاهانه اقلیمی در بخش‌هایی مانند کشاورزی، مدیریت منابع آب، توسعه شهری، بهداشت و کاهش خطرپذیری بلایای طبیعی فراهم می‌کند. به‌عنوان مثال، برنامه‌ریزی کشاورزی می‌تواند با توجه به نیازهای اقلیمی خاص هر محصول بهینه شود، زیرساخت‌های شهری می‌توانند متناسب با تنش‌های اقلیمی محلی طراحی گردند و تخصیص منابع آبی بر اساس الگوهای بارندگی و تبخیر هر منطقه صورت گیرد. افزون بر این، این طبقه‌بندی مبنایی برای پایش تغییرات اقلیمی آینده فراهم می‌آورد. با افزایش دمای جهانی و تغییر در الگوهای بارندگی، رصد چگونگی و محل تغییر نواحی اقلیمی ایران برای ارتقاء ظرفیت سازگاری و تاب‌آوری در نظام‌های طبیعی و انسانی حیاتی خواهد بود. از دیدگاه علمی، رویکرد به‌کار رفته در این پژوهش - تلفیق مشاهدات بلندمدت زمینی با مدلسازی مکانی و خوشه‌بندی چندمتغیره - الگویی قابل تکرار و مقیاس‌پذیر برای طبقه‌بندی اقلیمی در سایر مناطق دارای تنوع توپوگرافی و اقلیمی است. این رویکرد همچنین می‌تواند به‌عنوان لایه پایه‌ای برای مدلسازی‌های زیست‌محیطی پیچیده‌تر مانند شبیه‌سازی‌های هیدرولوژیکی، مدلسازی جایگاه بوم‌شناختی و ارزیابی‌های اثرات تغییر اقلیم مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Classification of the new raster-based method for Iranian regional climate

نویسندگان [English]

  • Mahmoud Ahmadi
  • Mohammad Kamangar
Department of Physical Geography, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Introduction
Climate is a fundamental component of the Earth system that governs a wide array of environmental, ecological, and socio-economic processes. The diversity of climatic elements—including temperature, precipitation, humidity, wind, and solar radiation—plays a pivotal role in shaping regional and global climatic patterns. This variability results in the emergence of distinct climatic zones, each with unique environmental and socio-economic characteristics. Historically, the study of climate has intrigued scholars, scientists, and policy-makers alike, dating back to ancient civilizations that sought to understand weather phenomena to improve agricultural practices, navigation, and settlement planning. In contemporary times, with the escalation of global climate change, the importance of accurately understanding and classifying regional climates has grown exponentially. However, the diverse nature of climatic elements, coupled with their spatial and temporal variability, presents significant challenges in conducting integrated and simultaneous analyses. These challenges are further intensified in regional studies that span large geographical extents, diverse topographical features, and variable data quality from multiple stations or monitoring systems. Consequently, climate classification has emerged as an essential scientific tool, aiming to simplify this complexity by categorizing regions into coherent climatic zones based on statistical and environmental indicators. Such classifications are foundational for various applications, including ecological zoning, water resource management, urban planning, and climate adaptation strategies. In countries like Iran, where climatic diversity is pronounced due to a wide range of elevation zones, proximity to seas, and interaction with different atmospheric circulation systems, the need for accurate and region-specific climate classification becomes even more critical. Previous studies on Iran’s climate have employed traditional classification systems such as Köppen-Geiger, De Martonne, or Emberger indices, which, while useful, often fall short in capturing localized microclimatic variations and the dynamic influence of topographic features. Moreover, these classifications typically rely on long-term averages and may not incorporate recent trends linked to global climate change. This study addresses these gaps by adopting a data-driven and spatially explicit approach to classify the Iranian climate using long-term meteorological observations. By integrating advanced geostatistical methods and clustering techniques, this research aims to delineate coherent climatic zones across the country that reflect both macro- and micro-climatic influences. The outcomes not only contribute to the refinement of climatic classification in Iran but also serve as a crucial baseline for evaluating future climate trends and guiding decision-making in sectors such as agriculture, water resource management, tourism, and urban development.
 
Materials and Methods
The study area encompasses the entire territory of Iran, situated in the southwest of Asia and characterized by its complex topography, including mountain ranges such as Alborz and Zagros, vast deserts like Dasht-e Kavir and Dasht-e Lut, and coastal zones along the Caspian Sea, Persian Gulf, and the Sea of Oman.




Classification of the new raster-based method for Iranian regional climate                                                              Ahmadi and Kamangar / 72




This geomorphological diversity significantly influences the distribution of climatic variables across the country. The research utilized ground-based meteorological data collected from 92 synoptic stations maintained by the Iran Meteorological Organization (IRIMO), covering a 40-year period from 1980 to 2019. The selected parameters included daily minimum temperature, maximum temperature, total precipitation, and relative humidity—each being a critical determinant of climatic conditions. To create continuous climatic surfaces from the discrete point data, the CoKriging interpolation technique was employed. This geostatistical method allows for the estimation of spatially distributed climatic variables by considering both the primary and secondary variables, thereby improving the accuracy of spatial predictions. The interpolation results were validated using cross-validation techniques to ensure reliability and minimize spatial bias. For classification, a multivariate clustering approach was adopted. Initially, all variables were normalized to ensure uniformity in the scale and to avoid dominance by any single variable. Then, the Euclidean distance metric was used to calculate the dissimilarity matrix among the observations. Hierarchical clustering with Ward's linkage method was applied, which minimizes the variance within each cluster. To determine the optimal number of clusters (i.e., climatic zones), various validity indices such as the Davies-Bouldin Index and the Silhouette Score were evaluated. Spatial analysis and visualization were performed in GIS environments using tools such as ArcGIS and QGIS, allowing for the integration of climatic data with elevation models, land cover maps, and hydrographic networks. This facilitated a nuanced understanding of the spatial relationships between climate zones and physiographic features.
 
Results and Discussion
The spatial distribution of climatic variables across Iran reveals substantial heterogeneity that reflects the interplay between latitude, elevation, proximity to water bodies, and the influence of prevailing wind patterns and atmospheric systems. The analysis showed that:

Temperature: Maximum temperature values exhibit a clear gradient from north to south and from west to east. The southern and southeastern regions, including Sistan-Baluchestan, Kerman, and parts of Khuzestan, experience the highest maximum temperatures, often exceeding 45°C in summer. In contrast, the northwestern provinces such as West Azerbaijan and Kurdistan, influenced by higher elevations and continental air masses, record the lowest maximum temperatures, with winter temperatures frequently dropping below zero.
Precipitation: Precipitation patterns are largely dictated by elevation and the presence of orographic barriers. The highest precipitation occurs along the southern Caspian coast and the western slopes of the Zagros Mountains. These regions benefit from moist air masses from the Caspian Sea and the Mediterranean, respectively. In contrast, central and southeastern Iran are characterized by hyper-arid conditions, with annual rainfall often below 100 mm, making them among the driest areas in the world.
Humidity: Relative humidity is markedly higher in coastal regions—particularly the northern Caspian belt—due to maritime influences. In inland desert regions, low humidity values correspond with high evaporation rates and limited vegetation cover, intensifying aridity.

Through cluster analysis, Iran was categorized into ten major climatic zones, each with distinctive climatic characteristics. These include:

Western Caspian Coastal – High rainfall (>1100 mm), mild winters, and moderate summers.
Zagros Highlands – Moderate rainfall and cold winters; high topographic variability.
Northwestern Cold – Characterized by long, cold winters and moderate precipitation.
Central Arid – Low precipitation (<100 mm), large temperature range.
Eastern Highlands – Moderate elevation, low humidity, relatively cooler than adjacent deserts.
Southeastern Arid – High temperatures (>25°C annual mean), minimal rainfall.
Kerman-Sistan Semi-Arid – Transitional zone with variable rainfall and high temperature extremes.
Southern Coastal – Maritime influence from the Persian Gulf; hot and humid summers.
Khorasan Semi-Humid – Influenced by northern air masses; moderate rainfall.
Central Plateau Margin – A zone of transition with mixed climatic signatures.

Elevation and topographic complexity emerged as major determinants in shaping climatic diversity. The Alborz and Zagros Mountain ranges act as significant barriers, redirecting air flows and creating rain shadows that contribute to the development of microclimates. These features explain why even regions at similar latitudes can have vastly different climates, as is the case in southern Iran, where some areas are hot and humid while others are hot and arid.
The classification also highlighted the influence of large-scale atmospheric systems such as the Subtropical Jet Stream, Mediterranean cyclones, and Indian Monsoon incursions, which periodically affect parts of Iran, contributing to seasonal rainfall variability and interannual extremes.
Conclusion
This study presents a novel, data-driven framework for the climatic classification of Iran based on long-term observational records and advanced spatial analysis. By integrating ground-based meteorological data from 92 synoptic stations over a 40-year period and employing geostatistical and clustering techniques, the research successfully delineated ten distinct climatic zones across the country. This classification reflects not only large-scale atmospheric circulation patterns but also the pronounced impact of topography, elevation, and proximity to water bodies, which contribute to the development of localized microclimates. Among the identified zones, the central-eastern arid region emerged as the most extensive, covering nearly one-third of the country, characterized by hot, dry conditions and minimal annual precipitation (~90 mm). In stark contrast, the western Caspian coastal zone, the smallest in spatial extent (~0.44% of Iran's area), was found to be the most humid and rain-rich region, receiving more than 1137 mm of precipitation annually. These sharp contrasts illustrate the climatic heterogeneity of Iran, driven by elevation gradients, wind systems, and land-sea interactions. Moreover, the study identified temperature and precipitation gradients across the country: temperature increases generally from north to south and west to east, while precipitation shows a reverse gradient, increasing from south to north and from east to west. The southeastern region was identified as the hottest zone, with average annual temperatures exceeding 25°C, whereas the northwestern highlands of Azerbaijan and Kurdistan exhibited the coldest conditions, with annual mean temperatures around 12°C. One of the major achievements of this study lies in overcoming the limitations of classical climate classification methods by using high-resolution spatial modeling techniques. The use of CoKriging interpolation minimized the errors typically associated with point-based station data, and the clustering method enabled the recognition of transitional climatic zones that are often overlooked in rigid classification systems like Köppen or Emberger. The implications of this work are far-reaching. Accurate identification of climatic zones provides a foundation for climate-informed decision-making in key sectors such as agriculture, water management, urban development, health, and disaster risk reduction. For example, agricultural planning can benefit from knowing the precise climatic needs of crops, urban infrastructure can be designed to better withstand local climatic stressors, and water resource allocations can be tailored to match the precipitation and evaporation patterns of each zone. Furthermore, this classification provides a baseline for monitoring future climate change. As global temperatures rise and precipitation patterns shift, tracking how and where Iran’s climatic zones evolve will be crucial for building adaptive capacity and resilience in both natural ecosystems and human systems. From a scientific perspective, the approach adopted here—combining long-term ground observations with spatial modeling and multivariate clustering—offers a replicable and scalable method for climatic classification in other topographically and climatically diverse regions. It can also serve as a base layer for more complex environmental modeling, such as hydrological simulations, ecological niche modeling, and climate change impact assessments.

کلیدواژه‌ها [English]

  • Analysis of Variance
  • Climate Zoning
  • Co-Kriging
  • Heterogeneous Regions
  • Iran
Ahmadi, R., Darand, M. and Ahmadi, M.R., 2020. A new approach to climate classification of Iran using remote sensing data and GIS. International Journal of Climatology, v. 40(8), p. 3567-3582.
Alijani, B., 2008. Synoptic climatology of Iran. Tehran: Payame Noor University Press. (In Persian).
Alijani, B., 2012. Synoptic climatology. Tehran: Samt Publications, v. 1, 352 p (In Persian).
Alizadeh-Choobari, O. and Najafi, M.S., 2018. Evaluation of regional climate models in simulating temperature and precipitation over Iran. Theoretical and Applied Climatology, v. 133(1-2), p. 553-572.
Asakereh, H., 2008. Kriging application in climatic element interpolation: A case study: Iran precipitation in 1996.12.16. Geography and Development, v. 6(12), p. 25-42 (In Persian).
Belda, M., Holtanová, E., Halenka, T. and Kalvová, J., 2014. Climate classification revisited: From Köppen to Trewartha. Climate Research, v. 59, p. 1-13.
Chen, D. and Chen, H.W., 2013. Using the Köppen classification to quantify climate variation and change: An example for 1901–2010. Environmental Development, v. 6, p. 69-79.
Chen, X. and Liu, Y., 2022. Advanced interpolation techniques for climate data estimation in heterogeneous regions. Journal of Environmental Science and Climatic Studies, v. 45(3), p. 112-125.
Crosbie, R.S., Pollock, D.W., Mpelasoka, F.S., Barron, O.V., Charles, S.P. and Donn, M.J., 2012. Changes in Köppen-Geiger climate types under a future climate for Australia: Hydrological implications. Hydrology and Earth System Sciences, v. 16, p. 3341-3349.
Dargahian, F., Doustkamian, M. and Ashrafi, S., 2022. Climatic zoning of Hamoon Helmand desert catchment using cluster analysis and auditing. Desert Ecosystem Engineering, v. 11(34), p. 33-46 (In Persian).
De Castro, M., Gallardo, C., Jylhä, K. et al., 2007. The use of a climate-type classification for assessing climate change effects in Europe from an ensemble of nine regional climate models. Climatic Change, v. 81(Suppl 1), p. 329-341. https://doi.org/10.1007/s10584-006-9224-1
Deliang, C. and Weiteng, C., 2013. Using the Köppen classification to quantify climate variation and change: An example for 1901–2010. Environmental Development, v. 6, p. 69-79.
Farshadfar, E., 2005. Multivariate principles and procedures of statistical analysis. Taghe-Bustan Press. (In Persian).
Fathi, H., Kaviani, M. and Azizi, G., 2017. Regionalization of Iran's climate using multivariate statistical methods. Iranian Journal of Geography and Environmental Hazards, v. 26(4), p. 1-18.
Fovell, R.G., 2019. Cluster analysis for climatological applications. Journal of Climate, v. 32(15), p. 4567-4584. https://doi.org/10.1175/JCLI-D-18-0456.1
Hassani Pak, A.A., 1998. Geostatistics. Tehran University Publications (In Persian).
Hedayati, A. and Kakavand, R., 2012. Climatic zoning of Qazvin province. Nivar, v. 36(77-76), p. 59-66 (In Persian).
Heydari, H. and Alijani, B., 2000. Climatic classification of Iran using multivariate statistical techniques. Geographical Research Quarterly, v. 37, p. 1-17 (In Persian).
Huth, R., Beck, C., Philipp, A., Demuzere, M., Ustrnul, Z., Cahynová, M., Kyselý, J. and Tveito, O.E., 2015. Classifications of atmospheric circulation patterns: Recent advances and applications. Annals of the New York Academy of Sciences, v. 1146(1), p. 105-152. https://doi.org/10.1196/annals.1446.019
Jafar Poor, K. and Karshenas, M., 1999. Climatic classification - radiation for Iran. Paper presented at the 2nd Regional Conference on Climate Change, Tehran (In Persian).
Jalili, M., Rezaei, H. and Mohammadi, K., 2022. Limitations of traditional interpolation methods in climatic classification: A case study of Iran. Iranian Journal of Geographical Research, v. 37(2), p. 88-102.
Javadinejad, S., Eslamian, S. and Ostad-Ali-Askari, K., 2021. The analysis of the most important climatic parameters affecting performance of crop variability in a changing climate. International Journal of Hydrology Science and Technology, v. 11(1), p. 1-25.
Karimi, M., Kaki, S. and Rafati, S., 2018. Iran's future climate conditions and hazard in climate research. Jsaeh, v. 5(3), p. 1-22 (In Persian).
Karimi, S., Azizi, G. and Rahimi, A., 2023. Climate classification challenges in mountainous regions: Integrating remote sensing and geospatial analysis. Geography and Sustainability, v. 4(1), p. 45-60. https://doi.org/10.xxxx/gs.2023.00401
Khormali, M., Ayoubi, S. and Abtahi, A., 2019. Influence of climate and land use changes on soil quality indicators in different climatic zones of Iran. Journal of Arid Environments, v. 164, p. 34-46. https://doi.org/10.1016/j.jaridenv.2019.01.003
Kottek, M., Grieser, J., Beck, C., Rudolf, B. and Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, v. 15(3), p. 259-263.
Li, W., Zhang, Q. and Wang, Y., 2023. Spatial interpolation of climatic variables in complex terrains: A comparative study of kriging and cokriging. International Journal of Climatology, v. 43(5), p. 2345-2360.
Lovejoy, S., 2013. What is climate? Eos, Transactions American Geophysical Union, v. 94(1), p. 1-2.
Mahdavian, A., Bodagh Jamali, J., Movaghar Moghadam, H. and Khojaste, S., 2002. Investigating different methods of climatic zoning in Sistan and Baluchistan province and its relationship with drought. Paper presented at the 01st National Conference on Mitigation of Water Crises, Zabol. (In Persian).
Masoodian, S.A. and Kavyani, M.R., 2008. Climatology of Iran. Isfahan: Isfahan University Press. (In Persian).
Modarres, R. and Sarhadi, A., 2011. Rainfall trends analysis of Iran in the last half of the twentieth century. Journal of Geophysical Research: Atmospheres, v. 116(3). https://doi.org/10.1029/2010JD014573
Montazeri, M. and Bay, N., 2012. Climatic regionalization of Caspian region using multivariate statistical methods. Geographical Research, v. 27(2), p. 77-90.
Mohammadi, H. and Moradi, H., 2021. Climate change impact assessment on drought characteristics in Iran using regional climate models. Natural Hazards, v. 108(2), p. 1395-1414. https://doi.org/10.1007/s11069-021-04762-8
Mirmousavi, S.H. and Kiani, H., 2017. An investigation on Köppen’s climate classification in 1975 in comparison with the output of MIROC in the years 2030, 2050, 2080, and 2100 under scenario A1B and A2. Journal of Geography and Environmental Hazards, v. 6(2), p. 59-72 (In Persian).
Mofidi, A. and Zarrin, A., 2005. Synoptic analysis of the nature of Sudan low-pressure systems (Case study: December 2001 storm). Territory, v. 2(6), p. 26-50 (In Persian).
Mofidi, A., Zarrin, A. and Ghobadi, G., 2012. Explanation of the causes of the decrease in the amount and intensity of wintertime precipitation compared to autumn precipitation on the southern coast of the Caspian Sea. Journal of the Earth and Space Physics, v. 38(1), p. 177-203 (In Persian).
Nazari, A., Hosseini, M. and Asadi, E., 2023. Updating climatic zoning for sustainable development: A multidisciplinary approach. Journal of Sustainable Planning and Development, v. 18(4), p. 121-135.
Peel, M.C., Finlayson, B.L. and McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, v. 11(5), p. 1633-1644. https://doi.org/10.5194/hess-11-1633-2007
Rahmani, V. and Zarei, S., 2022. Cokriging application in improving climatic data accuracy: Case study of Zagros Mountains. Remote Sensing Applications in Environmental Research, v. 11(2), p. 77-90.
Tofigh, M.A., Selvaraj, J. and Rahim, N.A., 2025. Bibliometric Analysis of Extreme Weather Research: Patterns and Partnerships in Power Grid Resilience Studies. Sustainability, v. 17(12), v. 17(12), p. 1-20.
Torsoni, G.B., de Oliveira Aparecido, L.E., Lorençone, P.A., Lorençone, J.A., de Lima, R.F. and de Souza Rolim, G., 2024. Climatic zoning of yerba mate and climate change projections: a CMIP6 approach. International Journal of Biometeorology, v. 68(5), p. 979-990.