ارزیابی اثر تغییر اقلیم بر منابع آب زیرزمینی دشت رامهرمز با استفاده از شبکه عصبی NARX

نوع مقاله : مروری

نویسندگان

دانشگاه شهید بهشتی

چکیده

پدیده تغییر اقلیم در سال‌های اخیر منجر به تغییرات قابل توجه در عناصراقلیمی و در نتیجه وضعیت منابع سطحی و زیرزمینی تامین آب خصوصاً در مناطق خشک و نیمه‌خشک شده است، این مساله بعضا باعث افت قابل توجه منابع آب زیرزمینی شده است. در این مقاله، اثرات تغییر اقلیم بر وضعیت منابع آب زیرزمینی دشت رامهرمز بررسی شده است. تأمین آب بخش‌های مختلف این منطقه به شدت به منابع زیرزمینی وابسته بوده و به همین دلیل بررسی تغییرات آب‌های زیرزمینی در دوره‌های آتی در توسعه این دشت و مدیریت منابع آب آن حائز اهمیت می‌باشد. به منظور ارزیابی اثرات تغییر اقلیم، از خروجی‌ مدل‌های گردش عمومی جو (GCM) استفاده شده است. و سپس جهت انطباق مقیاس خروجی این مدل‌ها با مقیاس‌ مورد نیاز مطالعات محلی تغییر اقلیم، داده‌های بارش و دما توسط مدل LARS-WG ریز مقیاس شده‌اند. از اطلاعات ریزمقیاس شده جهت تعیین مقادیر تغذیه و تخلیه آبخوان در دوره‌های آتی استفاده گردید. برای بررسی تغییرات تراز آب زیرزمینی در مقاطع مختلف، مدل دینامیکی شبکه عصبی در محیط نرم‌افزار MATLAB توسعه داده شده است. همچنین می توان با استفاده از سایر سناریوها و مدلسازی ریاضی به بررسی و مقایسه دیگرنقاط هم پرداخت. نتایج مطالعه با فرض حفظ وضعیت موجود توسعه منطقه، حاکی از سیر نزولی حجم آبخوان با توجه به تغییرات اقلیمی و اثرات آن بر منابع و مصارف محدوده مطالعاتی می‌باشد. همینطور نتایج، سناریوA2 را بحرانی ترین سناریو مربوط به تغییرات اقلیمی معرفی که بیشترین افت آبخوان را در مدل سازی شبکه عصبی هم نشان می دهد.

کلیدواژه‌ها


عنوان مقاله [English]

The impact of climate change on Groundwater resources using neural network NARX in Ramhormoz

نویسندگان [English]

  • Alireza Shakoba
  • Atena Cheshmi
Academic member of RS and GIS Center, Earth Sciences Faculty,Shahid Beheshti University.
چکیده [English]

Climate change impacts in recent years have resulted in significant changes in the availability of freshwater all over the world due to changes in precipitation and temperature. In this paper, the effect of climate change on the groundwater resources in Ramhormoz plain was studied. The water supply in agriculture, industrial and domestic sectors in this region is highly depend on groundwater, Therefore it is important to project future changes in groundwater level particularly for water resources management. In order to assess the climate change effects on the groundwater level, the output of one of the General Circulation Models (GCM) was used. Due to low resolution of GCM outputs, the LARS-WG model was utilized for downscaling daily temperature and rainfall data. The downscaled data were used to determine future recharge and discharge of the aquifer and to simulate variations in groundwater levels. Then dynaimc model was developed using neural network in MATLAB. The results of climate change impacts on groundwater assessment in the study region showed a decreasing trend of water level of the aquifer. The management strategies should be examined in order to mitigate the climate change impacts on groundwater resources in this region. The resultes of study also indicated that then will be mone decrease under the A2 Scenario.

کلیدواژه‌ها [English]

  • climate change
  • Extreme indices
  • Groundwater
  • Neural Network
  1. -ابول پور، آ.، 1389. تدوین الگوی ارزیابی اثرات تغییر اقلیم در ذخایر آب زیرزمینی مطالعه موردی دشت رفسنجان، پایان نامه کارشناسی ارشد، دانشکده علوم پایه، دانشگاه علوم و تحقیقات تهران، 143 ص.
  2. - کیا،س، م.،1390. شبکه های عصبی در متلب، چاپ اول، انتشارات کیان رایانه سبز. تهران، 408 ص.
  3. -ندیری، ع.، 1386. پیش بینی سطح آب زیرزمینی تبریز با شبکه های عصبی مصنوعی، پایان نامه کارشناسی ارشد، دانشگاه تبریز.
  4. -Babaeian, I., Kwon, W.T., and Im, E.S., 2004. Application of Weather Generator Technique for Climate Change Assessment Over Korea, Korea Meteorological Research Institute, Climate Research Lab Report, 98p.
  5. -Cohen, S. J., 1986. Impacts of CO2-induced climatic change on water resources in the Great Lakes Basin, Climatic Change,v. 8, p. 135-153.
  6. -Coppola, E., Szidarovszky,F., Poulton, M., and Charles. E., 2003. Artificial neural network approach for predicting transient water level in a multilayered groundwater system under variable state, pumping, and climate conditions. Journal of Hydrologic Engineering,v. 8( 6), p. 348-359.
  7. -Coulibali, P., Anctil, F., and Bobee, B., 2001. Daily streamflow forecasting using neural networks with stopped training approach. Journal of Hydrology, v. 230, p.244-257.
  8. -Karamouz. M., and Araghinejad, Sh., 2004. Long-lead forecatsing using ANN and FIS, calibration and validation of hydrologic models Hydroinformatics, Singapour, v.9, p. 402–414.
  9. -Karamouz, M., Ahmadi, A., and Akhbari, M., 2010. Groundwater Hydrology Engineering, Planning and Management, Published by CRC press, Taylor and Francis group, Boca Raton, Florida. , New York, v. 5, 676 p.
  10. -Kauo-Chin, H., Chug-Ho, W., Kuan-Chin, C., Chien-Tai, C., and Kai-Wei, M., 2010. Climate-induced hydrological impacts on the groundwater system the pingtung plain, Taiwan, v.11, P. 43-60.
  11. -Mostadraf, J., Razack, M., and Sinan, M., 2008. Evaluation of the impacts of climate changes on the coastal chaoia aquifer, Moroco, using numerical modelling. Journal of Hydrogeology, v.16, p. 1411-1426.
  12. -Semenov, M.A., and Barrow, E.M., 1997. Use of a stochastic weather generator in the development of climate change scenarios. Journal of Climatic Change, v. 35, p. 397-414.
  13. -Wilby, R.L., Dawson, C.W., and Barrow, E.M., 2002, SDSM- A decision support tool for the assessment of regional climate change impacts, Journal of Environmental Modeling and Software, v. 17, p. 147-159.