مطالعه خصوصیات مخزنی سازند سروک و تعیین مرز آن با سازند ایلام به طریق ژئوشیمیایی در تاقدیس چناره، جنوب لرستان

نوع مقاله : علمی -پژوهشی

نویسندگان

1 استاد دانشگاه خوارزمی

2 دانشجو

چکیده

سازند سروک به سن آلبین تا سنومانین به عنوان یکی از مهم‌ترین سنگ مخزن‌های کربناته ایران می‌باشد که در حوضه رسوبی زاگرس تا حوضه خلیج فارس دارای گسترش زیادی است. در این تحقیق یک رخنمون سطحی از سازند سروک به ضخامت 477 متر در تاقدیس چناره واقع در جنوب لرستان مورد مطالعه قرارگرفت. سنگ­شناسی سازند سروک در منطقه مورد مطالعه از سنگ آهک توده‌ای، متوسط تا نازک لایه می‌باشد. مرز بالایی آن با سازند ایلام به دلیل تشابه سنگ‌شناسی مشکل است اما با استفاده از داده‌های مربوط به ایزوتوپ کربن 13 و عناصر اصلی و فرعی مرز بین این دو سازند به طور دقیق مشخص گردید. همچنین شواهد ژئوشیمیایی نشان دادند که مرز بین رخداد سنومانین-تورونین در منطقه مورد مطالعه با داده‌های جهانی تطابق دارد. مطالعات رسوب‌شناسی و بررسی رخساره‌ای 166 مقطع نازک از سازند سروک در تاقدیس چناره منجر به تشخیص 12 ریزرخساره شد که در چهار کمربند رخساره‌ای جزرومد، لاگون، سد و دریای باز نهشته شده‌اند. با توجه به ریزرخساره‌های شناخته شده و مقایسه آن‌ها با ریزرخساره‌های استاندارد، عدم حضور ساختارهای ریفی و رخساره‎های ریزشی و لغزشی، محیط رسوبی این سازند کربناته رمپ تشخیص داده شده است. فرآیندهای دیاژنزی که سازند سروک را در تاقدیس چناره تحت­تاثیر قرار داده‌اند شامل: سیمانی شدن، دولومیتی شدن، انحلال، تراکم، نئورموفیسم، میکریتی شدن، سیلیسی شدن و آهن‌دار شدن است. همچنین مطالعه با میکروسکوپ کاتدولومینسانس نشان داد که سیمان‌های سازند سروک در برش مورد مطالعه در سه محیط دیاژنتیکی جوی، دریایی و تدفینی تشکیل شده‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Sedimentary reservoir study of the Sarvak Formations and recognatin of its boundary with Ilam Formation by geochemical data in Chenareh anticline, south of Lorestan

نویسندگان [English]

  • Ahmad Asadi 1
  • Elham Asadi mehmandosti 2
1 Student
2 Assistant professor, Geology Department, Kharazmi University
چکیده [English]

The Sarvak Formation with Albian to Cenomanian ages is one of the main carbonate reservoir in Iran which spreated in the Zagros Basin throughout the Persian Gulf. In the current research an outcrope section of the Sarak Formation with a 477 m thickness in Chenareh anticline, South of Lorestan was studied. The lithology of the Sarvak Formation in studied area was massive, medium to thin bedded limestones. The upper boundary of the Sarvak Formation with the Ilam Formation was not recognizable due to similar lithogy, however with carboan isotope data and trace and major elements the boundary was determined. The geochemical evidance indicate that the Cenomanian- Turonian boundary was correlated with global data. Sedimentological studies and facies analysis of 166 thin sections of the Sarvak Formation in Chenareh Anticline was led to determination of 12 microfacies that are deposited in 4 facies belts including tidal falt, lagoon, shoal and open marine envronments. According to recognized microfacies and comparing with standard facies, lack of reef structures, sliding and slumping facies, the sediment environment of this formation was distinguishe as a carbonate ramp. Digenetic processes which affected the Sarvak Formation in Chenareh anticline includes cementation, dolomitization, dissolution, compaction, stylolitization, neomorphism, micritization, ferronization, bioturbation and silicification. Based on cathodoluminescence study the cements of the Sarvak Formation are formed in there meteoric, burial, and marine diagenesis environments.

کلیدواژه‌ها [English]

  • Cathodoluminescence-Chenareh anticline-Carbon Isotope-Diagenesis-Microfacies-Sarvak Formation
  1. منابع
  2. آدابی، م. ح.، 1390. ژئوشیمی رسوبی. نشر آرین زمین، چاپ دوم، 503 ص.
  3. تیموریان، ا.، 1383. چینه نگاری زیر زمینی سازندهای سروک و ایلام (گروه بنگستان) در جنوب شرق اهواز،پایان‌نامه کارشناسی ارشد .دانشگاه اصفهان، 177 ص.
  4. حاجی علی بیگی، ح.، علوی، س.، افتخارنژاد، ج.، مختاری، م.، آدابی، م.، 1387. استفاده از شکستگی ها در تفسیر ساختاری یک تاقدیس، مطالعه موردی: تاقدیس چناره، جنوب باختر ایران صفحات 33 تا 44.‎
  5. فرزدی، پ.، 1371. محیط رسوبی و میکروفاسیس سازند سروک در تاقدیس نار (شمال شرق بندر کنگان)، پایان‌نامه کارشناسی ارشد، دانشگاه تربیت معلم تهران، 108 صفحه.
  6. قلاوند، ه.، 1388. لیتوستراتیگرافی و بیوستراتیگرافی سازندهای سروک و ایلام در بخش شمال شرقی فروافتادگی دزفول و مقایسه آنها با مقاطع تحت‎الارض مجاور. رسالۀ دکتری، دانشکده علوم زمین، دانشگاه شهید بهشتی، 484 صفحه.
  7. کیوانی، ف.، 1372. میکروفاسیس، محیط رسوبی و تاریخچه دیاژنز سازندهای سروک و ایلام در میدان نفتی اهواز، دزفول شمالی، پایان‌نامه کارشناسی ارشد، دانشگاه آزاد، 115 صفحه.
  8. لاسمی، و.، جلیلیان، ع.، 1376. بررسی میکروفاسیس‎ها و محیط رسوبی سازند سروک در مناطق خوزستان، فصلنامه علمی پژوهشی علوم زمین، سال ششم، شماره‎های 25 و 26، صفحات 48 تا 52.
  9. وزیری مقدم، ح.، صفری، ا.، 1382. بررسی رخساره‌های آهکی و تفسیر محیط رسوب گذاری سازند سروک در ناحیه سمیرم .مجله پژوهشی دانشگاه اصفهان، شماره 2، صفحات 59 تا 74.
  10. Adabi, M.H., 1996. Sedimentology and geochemistry of Upper Jurassic (Iran) and Percamberian (Tasmania) carbonates. Unpublished Ph.D. Thesis: University of Tasmania, Australia, 400 p.
  11. Adabi, M.H., 2009. Multistage dolomitization of Upper Jurassic Mozduran Formation, Kopet-Dagh Basin, NE Iran: Carbonates and Evaporites, v. 24, p.16-32.
  12. Ahmadipour, M. R. 2002. The role of Sarvak Formation in supplying Pol-e Dokhtar town (Iran) with drinking water: Acta Carsologica, v. 31, p. 93–103.
  13. Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution: American journal of Science, v. 304, p. 1-20.
  14. Amthor, J.E., and Friedman, G.M., 1992. Early-to late-diagenetic dolomitization of platform carbonates: Lower Ordovician Ellenburger Group, Permian Basin, west Texas: Journal of Sedimentary Research, v. 62, n. 1, p. 131-144.
  15. Arthur, M.A., Dean, W.E. and Pratt, L.M., 1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary: Nature, v. 335, p.714-717.
  16. Arthur, M.A., Schlanger, S.T. and Jenkyns, H.C., 1987. The Cenomanian-Turonian Oceanic Anoxic Event, II: Palaeoceanographic controls on organic-matter production and preservation: Geological Society, London, Special Publications, v. 26, p. 401-420.
  17. Arzani, N., 2004. Diagenetic evolution of mudstones: black shales to laminated limestones, an example from the Lower Jurassic of SW Britain: Journal of Sciences, Islamic Republic of Iran, v. 15, p. 257-267.
  18. Asadi Mehmandosti, E., Adabi, M.H. and Woods, A.D., 2013. Microfacies and geochemistry of the Middle Cretaceous Sarvak Formation in Zagros Basin, Izeh Zone, SW Iran: Sedimentary Geology, v. 293, p. 9-20.
  19. Barron, E.J., 1983. A warm equable Cretaceous: The nature of the problem, Earth Sciences Review, v. 19, p. 305-338.
  20. Bathurst, R.G., 1987. Diagenetically enhanced bedding in argillaceous platform limestones: stratified cementation and selective compaction: Sedimentology, v. 34, p. 749-778.
  21. Bernaus, J.M., Arnaud-Vanneau, A., and Caus, E., 2002. Stratigraphic distribution of Valanginian–Early Aptian shallow-water benthic foraminifera and algae, and depositional sequences of a carbonate platform in a tectonically-controlled basin: the Organyà Basin, Pyrenees, Spain: Cretaceous Research, v. 23, p. 25-36.
  22. Burchette, T.P., and Wright, V.P., 1992. Carbonate ramp depositional systems: Sedimentary Geology, v. 79, p. 3-57.
  23. Carannanate, G., Ruberti, D., and Sirna, M., 2000. Upper Cretaceous low-energy ramp limestones from the Sorrento Peninsula (southern Apennines, Italy): Micro and macrofossil associations and their significance in the depositional sequences: Sedimentary Geology, v. 132, p. 89-124.
  24. Dickson, J.A.D., 1965. A modified staining technique for carbonates in thin section: Nature, v. 205, p. 587.
  25. Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture: American Association of Petroleum Geologists Memorial, V. 1, p. 108-121.
  26. Embry III, A.F. and Klovan, J.E., 1971. A late Devonian reef tract on northeastern Banks Island, NWT: Bulletin of Canadian Petroleum Geology, v. 19, p. 730-781.
  27. Flügel, E., 2010. Microfacies of Carbonates Rocks, Analysis, Interpretation and Application: Springer, 976 p.
  28. Folk, R.L., 1974. Petrography of Sedimentary Rocks: University of Texas, Hemphill, Austin, Tex, 182 p.
  29. Friedman, G.M., 1965. Terminology of crystallization textures and fabrics in sedimentary rocks: Journal of Sedimentary Research, v. 35, p. 643-655.
  30. Geel, T., 2000. Recognition of stratigraphic sequence in carbonate platform and slope: empirical models based on microfacies analysis of paloogene deposits in southeastern Spain, Palaeogeogrphy: Palaeoclimatology. Palaeoecology, v. 155, p. 211-238.
  31. Ghabeishavi, A., Vaziri-Moghaddam, H., Taheri, A. and Taati, F., 2010. Microfacies and depositional environment of the Cenomanian of the Bangestan anticline, SW Iran: Journal of Asian Earth Sciences, v. 37, p. 275-285.
  32. Gregg, J.M., and Shelton, K.L., 1990. Dolomitization and dolomite neomorphism in the back reef facies of the Bonneterre and Davis formations (Cambrian), southeastern Missouri: Journal of Sedimentary Research, v. 60, p. 549-562.
  33. Gregg, J.M., and Sibley, D.F., 1984. Epigenetic dolomitization and the origin of xenotopic dolomite texture: Journal of Sedimentary Research, v. 54, p. 908-931.
  34. Heckel, P. H., 1972. Recognition of ancient shallow marine environment: SEPM, Special publication, v. 161, p. 226-286.
  35. James, N.P., and Choquette, P.W., 1984. Diagenesis 9. Limestones the meteoric diagenetic environment: Carbonate Sedimentology and Petrology, Geosinece of Canada. v. 11, 161-194 p.
  36. Jarvis, I., Gale, A.S., Jenkyns, H.C., Pearce, M.A., 2006. Secular variation in Late Cretaceous carbon isotopes: a new d13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma). : Geological Magezine, v. 143, p. 561–608.
  37. Jenkyns, H.C., Gale, A.S., Corfield, R.M., 1994. Carbon and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimati significance: Geological Magezine, v. 131, p. 1–34.
  38. Joachimski, M.M., 1994. Subaerial exposure and deposition of shallowing upward sequences: evidence from stable isotopes of Purbeckian peritidal carbonates (basal Cretaceous), Swiss and French Jura Mountains: Sedimentology, v. 41, p. 805-824.
  39. Longman, M.W., 1980. Carbonate diagenetic textures from nearsurface diagenetic environments: AAPG Bulletin, v. 64, p. 461-487.
  40. Mazzullo, S.J., 1992. Geochemical and neomorphic alteration of dolomite: a review: Carbonates and evaporites, v. 7, p. 21-37.
  41. Mehrabi, H. and Rahimpour-Bonab, H., 2014. Paleoclimate and tectonic controls on the depositional and diagenetic history of the Cenomanian-early Turonian carbonate reservoirs, Dezful Embayment, SW Iran. Facies, v. 60, p. 147-167.
  42. Morse, J.W. and Mackenzie, F.T., 1990. Geochemistry of Sedimentary Carbonates: Elsevier, 681 p.
  43. Pattison, R.Takin, M., 1971. Geological Significance of Dezful Embayment boundaries: National Iranian Oil Company, Unpublishad paper.
  44. Pomar, L., 2001. Ecological control of sedimentary accommodation: evolution from a carbonate ramp to a rimmed shelf: Upper Miocene, Balearic Islands: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 175, p. 249-272.
  45. Raeisi, E. and Karami, G. 1997. Hydrochemographs of Berghan karst spring as indicators of aquifer characteristics: Journal of Cave and Karst Studies, v. 59, p. 112–118.
  46. Rahimpour‐Bonab, H., Mehrabi, H., Navidtalab, A. and Izadi‐Mazidi, E., 2012. Flow unit distribution and reservoir modelling in Cretaceous carbonates of the Sarvak Formation, Abteymour Oilfield, Dezful Embayment, SW Iran: Journal of Petroleum Geology, v. 35, p. 213-236.
  47. Rahimpour‐Bonab, H., Mehrabi, H., Navidtalab, A., Omidvar, M., Enayati‐Bidgoli, A.H., Sonei, R., Sajjadi, F., Amiri‐Bakhtyar, H., Arzani, N. and Izadi‐Mazidi, E., 2013. Paleo‐exposure surfaces in Cenomanian-Santonian carbonate reservoirs in the Dezful embayment, SW Iran: Journal of Petroleum Geology, v. 36, p. 335-362.
  48. Reiss, Z. and Hottinger, L., 1984. The Gulf of Aqaba (Elat): ecological micropaleontology: Ecological Studies, v. 50, p. 317.
  49. Richter, D.K., Götte, T., Götze, J. and Neuser, R.D., 2003. Progress in application of cathodoluminescence (CL) in sedimentary petrology: Mineralogy and Petrology, v. 79, p. 127-166.
  50. Schlanger, S.O., Arthur, M.A., Jenkyns, H.C. and Scholle, P.A., 1987. The Cenomanian-Turonian Oceanic Anoxic Event, I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ13C excursion. Geological Society, London, Special Publications, v. 26, p. 371-399.
  51. Schobben, M., Ullmann, C.V., Leda, L., Korn, D., Struck, U., Reimold, W.U., Ghaderi, A., Algeo, T.J. and Korte, C., 2016. Discerning primary versus diagenetic signals in carbonate carbon and oxygen isotope records: An example from the Permian–Triassic boundary of Iran: Chemical Geology, v. 422, p. 94-107.
  52. Scholle, P.A. and Arthur, M.A., 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. AAPG Bulletin, v. 64, p. 67-87.
  53. Scholle, P.A. and Ulmer-Scholle, D.S., 2003. A Color Guide to the Petrography of Carbonate Rocks: Grains, Textures, Porosity, Diagenesis, AAPG Memoir, 461 p.
  54. Tucker, M.E. and Bathurst, R. G. C., 1990. Carbonate diagenesis: Blackwell, Oxford, 312 p.
  55. Tucker, M.E. and Wright, V.P., 1990. Carbonate Sedimentology: Blackwell, Sci. Publ., London, 482 p.
  56. Veizer, J. and Demovic, R., 1974. Strontium as a tool in facies analysis: Journal of Sedimentary Research, v. 44, p. 93-115.
  57. Veizer, J., 1983. Chemical Diagenesis of Carbonates: theory and application of trace element technique. In Arthur, M. A., Anderson, T F., Kaplan, I.R., Viezer. J., and Land, L. s. (eds): Stable Isotope in Sedimentary Geology, Tulsa, Okla: Soc. Econ. Paleontal. Mineral. Short Course, No. 10, p. 31-1 to 3-100.
  58. Voigt, S., Friedrich, O., Norris, R.D., Schnfeld, J., 2010. Campanian–Maastrichtian carbon isotope stratigraphy: shelf-ocean correlation between European shelf sea and the tropical Pacific Ocean: Newsl. Stratigr, v. 44, p. 57–72.
  59. Voigt, S., Gale, S.G., Jung, C., and Jenkyns, H.C., 2012. Global correlation of Upper Campanian–Maastrichtian successions using carbon-isotope stratigraphy: development of a new Maastrichtian timescale. Newsl. Stratigr, v. 45, p. 25–53.
  60. Wilson, J.L., L., 1975, Carbonate Facies in Geologic History: Springer-Verlag, Berlin Heidelberg, NewYork, 471 p.