پتروگرافی و رده‌بندی تراورتن‌های قروه-تکاب بر اساس تجزیه‌های ایزوتوپی و تصاویر SEM

نوع مقاله : علمی -پژوهشی

نویسندگان

1 دانشگاه شهید چمران اهواز

2 استاد بخش علوم زمین، دانشکده علوم، دانشگاه شیراز

3 استادیار بخش علوم زمین، دانشکده علوم، دانشگاه شیراز

4 دانشجوی دکتری ژئوشیمی، دانشگاه ETH زوریخ، سوئیس

چکیده

در این پژوهش تراورتن‌های مناطق قروه، بیجار و تکاب، شمال غرب ایران، مورد بررسی‌های کانی‌شناختی و ایزوتوپی قرار گرفته‌اند. با استفاده از نتایج تجزیه ایزوتوپ‌های 18O و 13C، تراورتن‌‌های منطقه در رده گرمازاد (Thermogene) رده‌بندی، و منشاء CO2 موجود در آب چشمه‌‌های تراورتن ساز، ماگمایی تعیین شد. همچنین این تراورتن‌‌ها از نظر سنگ‌رخساره در سه رده قلوه‌ای، انکویید و قشرهای بلورین جای می‌گیرند. مقادیر  δ13C این تراورتن‌ها در محدوده (6.1+‰ تا +9.8‰) قرار دارد. یکی از دلایل افزایش مقدار ایزوتوپ کربن در این نهشته‌‌ها، وجود ریزاندامگان ‌‌هایی (Microorganisms) مانند جلبک‌‌ها است که حضور آن‌ها در تصاویر میکروسکوپ الکترونی (SEM) نیز تایید شد. بر اساس نتایج XRD، فاز غالب کانیایی در بیشتر نمونه‌های منطقه مطالعاتی کلسیت بوده درحالیکه کانی‌های آراگونیت و اکسیدهای آهن نیز به وفور یافت شد. با بررسی پتروگرافی مقاطع نازک و تصاویر SEM، تراورتن‌های محور قروه-تکاب از نظر ریزبافتاری (Microfabric) به چهار رده فشرده، لایه‌ای، اکسید آهن­دار و تراورتن‌های آراگونیت دار تقسیم­بندی شدند.

کلیدواژه‌ها


عنوان مقاله [English]

petrography and classifying of the Ghorveh-Takab road travertines by using isotopic analysis method and SEM pictures

چکیده [English]

In this study, travertines from Gorveh, Bijar and Takab area, north west of Iran, were investigated using geochemical, mineralogical and isotopic methods. The investigated travertines are classified as thermogene group and the source of CO2 in travertine springs water were determined magmatic type by analysing 18O and 13C isotopes. These travertines belong to three lithofacies namely pebbly travertine, oncoid and crystalline crust. 13C ranges from +6.08 to +9.84. A probable reason for the observed high carbon isotope content in these deposits, is the presence of algae microorganisms, that is verified by SEM images. According to XRD analysis, the dominated mineral phase in the majority of samples is Calcite while Aragonite and Fe-Oxides minerals are also abundant. Ghorveh-Takab travertines may be classified in to four groups on the basis of petrographic and SEM criteria. These include compacted, laminated, Fe-Oxides and aragonite bearing classes.

کلیدواژه‌ها [English]

  • Travertine
  • petrography
  • Isotopic Analysis
  • SEM
  • Ghorveh-Takab road
  1. -آدابی، م.ح. و زرگر امینی، ز.، 1387. اطلس سنگ‌های رسوبی در زیر میکروسکوپ، مرکز نشر دانشگاهی، ص 227.
  2. -آدابی، م.ح.، 1390. ژئوشیمی رسوبی، چاپ دوم، انتشارات آرین زمین. 504 ص.
  3. -آقا‌نباتی. ع.، 1383. زمین‌شناسی ایران، تهران، انتشارات سازمان زمین‌شناسی و اکتشاف معدنی کشور، 586 ص.
  4. -مُر، ف.، روشنک، ر. و کشاورزی، ب.، 1390. بررسی ریخت‌شناسی و پتروگرافی تراورتن‌های اطراف قروه، بیجار و تکاب، شانزدهمین همایش انجمن زمین‌شناسی ایران، 8 ص.
  5. -Altermann, W., 2008. Accretion, trapping and binding of sediment in Archean stromatolites-morphological expression of the antiquity of life: Space Science Reviews, v. 135, p. 55-79.
  6. -Atabey, E., 2002. The Formation of Fissure Ridge Type Laminated Travertine-Tufa Deposits Microscopical Characteristics and Diagenesis, Kirşehir Central Anatolia, Journal of Mineral Bulletin of The Mineral Research and Exploration, v. 123-124, p. 65-59.
  7. -Bates, R.L. and Jackson, J.A., 1987. Glossary of Geology, 3rd Ed, American Geological Institute, Alexandria USA, 321 p.
  8. -Chafetz, H. S. and Meredith, J. C., 1983. Recent travertine pisolites (pisoids) from southeastern Idaho, U.S.A. 450–455, In: Peryt TM (ed) Coated Grains, New York, Springer-Verlag, 655 p.
  9. -Cohn, F., 1864. Uber die Entstehung des travertin in den Wasserfallen von Tivoli: Neues Jahrbuch für Geologie und Paläontologie, v.3, p. 580-610.
  10. -Crossey, L.J., Fischer, T.P., Patchett, P.J., Karlstrom, K.E., Hilton, D.R., Newell, D.L., Huntoon, P., Reynolds, A.C. and de Leeuw, G.A.M., 2006. Dissected hydrologic system at the Grand Canyon: interaction between deeply derived fluids and plateau aquifer waters in modern springs and travertine: Geology, v.34, p. 25-28.
  11. -Drysdale, R. N., 1999. The sedimentological significance of hydropsychid caddis-fly larvae (Order: Trichptera) in a travertine-depositing stream: Louie Creek, Northwest Queensland, Australia: Journal of Sedimentary Research, v. 69, p. 145-150.
  12. -Ford, T.D. and Pedley, H.M., 1996. A review of tufa and travertine deposits of the world: Earth-Science Reviews, v.41, p.117-175.
  13. -Fouke, B.W., Farmer, J.D., Des Marais, D.J., Pratt, L., Sturchio, N.C., Burns, P.C. and Discipulo, M.K., 2000. Depositional facies and aqueoussolid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, USA): Journal of Sedimentary Research, v.70, p. 565-585.
  14. -Glime, J.M. and Vitt, D., 1977. Physiological Of Aquatic Music: Lindbergia, v.10, p. 41-52.
  15. -GUO, L. and Riding, R., 1998. Hot-Spring Travertine Facies And sequences, late pleistocen, rapolano term, Italy: Journal of sedimentology, v.45, p. 163-180.
  16. -Hoefs, J., 2004. Stable isotope geochemistry, 5th Edition, Springer, Berlin, 244 p.
  17. -Hynes, H. B. N., 1978. The Ecology of Running Waters, university press Liverpool, 378 p.
  18. -Melezhik, V.A. and Fallick, A.E., 2001. Palaeoproterozoic Travertines of Volcanic Affiliation from a 13 C-Rich Rift Lake Environment: Chemical geology, v. 173, p. 293-312.
  19. -Ozkul, M., Varol, B. and Alçiçek, M.C., 2002. Depositional environments and petrography of Denizli travertines: Bulletin of the Mineral Research and Exploration, v. 125, p. 13-29.
  20. -Pasvanoglu, S. and Chandrasekharam, D., 2011. Hydrogeochemical and isotopic study of thermal and mineralized waters from the Nevşehir (Kozakli) area, Central Turkey: Journal of Volcanology and Geothermal Research, v. 202, p. 241-250.
  21. -Peckmann, J., Reamer, A., Luth, C., Hansen, B.T., Heinicke, C., Hoefs, J. and Reitner, J., 2001. Methane-derived carbonates and authigenic the western black sea: Journal of Marine Geology, v. 177, p. 129-150.
  22. -Pedley, M., 2009. Tufas and travertines of the Mediterranean region: a testing ground for freshwater carbonate concepts and developments: Sedimentology, v, 56, p. 221-246.
  23. -Pentecost, A., 2005. Travertine, Reader in Geomicrobiology School of Health and Life Sciences King’s College London, Springer. 443 p.
  24. -Pentecost, A. and Viles, H.A., 1994. A review and reassessment of travertine classification: geographie physique Quaternaire, v. 48, p. 305-314.
  25. -Pevalek, I., 1935. Der Travertin und die Plitvice Seen, verhandlungen des internationalen verein limnologie, v. 7, p. 165-181.
  26. -Rahmani Javanmard, S., Tutti, F., Omidian, S. And Ranjbaran, M., 2012. Mineralogy And The Genesis Of Fissure-Ridge And Vein Type Travertine (In Ab-E Ask) Based On Petrographic Studies And Carbon And Oxygen Isotopes Analysis: Central European Geology, v. 55(2), p. 187-212.
  27. -Ryu, M., Kim, H., Lim, M., You, K. and Ahn, J., 2010. Comparison of dissolution and surface reactions between calcite and aragonite in l-glutamic and l-aspartic acid solutions: Molecules, v. 15, p. 258-269.
  28. -Sanders, J.E., Friedman, G.M., 1967. Origin and occurrence of limestones, in: Chilingar, G.V., Bissel, H.J., Fairbridge, R.W. (Eds.), Carbonate Rocks Developments in Sedimentology, v. 9., p. 169-265.
  29. -Uysal, T., Feng, Y., Zhao, J., Isik, V., Nuriel, P. and Golding, S.D., 2009. Hydrothermal CO2 degassing in seismically active zones during the late Quaternary: Chemical Geology, v. 265, p. 442-454.
  30. -Veysey, J., Fouke, B.W., Kandianis, M.T., Schickel, T.J., Johnson, R.W. and Goldenfeld, N., 2008. Reconstruction of water temperature, pH and flux of ancient hot springs from travertine depositional facies: Journal of Sedimentary Research, v. 78, p. 69-76.
  31. -Zhou, G.T., Yu, J.C., Wang, X.C., Zhang, L.Z., 2004. Sonochemical synthesis of aragonite-type calcium carbonate with different morphologies: New J. Chem., v. 28, p. 1027-1031.