استفاده از روش ترکیبی AHP-TOPSIS به منظور مدل‌سازی پتانسیل معدنی مس در ورقه یکصدهزار ابهر، شمال‌غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه اکتشاف معدن، دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

اساساً دلیل تهیه مدل پتانسیل معدنی این است که با شناسایی بهترین نواحی امیدبخش و مناطق اهداف اکتشاف، ناحیه مورد مطالعه محدودتر شده تا با کوچک شدن آن، ریسک عملیات اکتشاف کاهش و با قطعیت بیش­تری بتوان نواحی امیدبخش را برای متمرکز شدن در مراحل تفصیلی انتخاب نمود. بر این اساس، هدف از مطالعه حاضر تلفیق لایه­های شاهد مختلف با استفاده از روش ترکیبی AHP-TOPSIS، به منظور شناسایی نواحی امیدبخش مس در ورقه یکصدهزار ابهر می‌باشد. بدین منظور، 7 لایه شاهد اطلاعاتی شامل آنومالی ژئوشیمیایی مس حاصل از تحلیل مؤلفه اصلی، نقشه فاصله از واحدهای سنگی آذرین نفوذی و واحدهای آتشفشانی، نقشه فاصله از گسل­های منطقه و در نهایت نقشه­های فاصله از دگرسانی­های آرژیلیک، فیلیک و پروپیلیتیک در نظر گرفته شد. جهت آماده­سازی نقشه­های شاهد برای تلفیق، ابتدا مقادیر نقشه­ها با استفاده از تابع لجستیکی به فضای مناسب با دامنه (1-0) منتقل و سپس توسط روش فرکتالی عیار- مساحت کلاسه‌بندی شدند. در گام بعد معیارها و زیرمعیارهای مختلف توسط روش AHP وزن­دهی و در ادامه توسط روش TOPSIS تلفیق شدند. نقشه­ پتانسیل نهایی توسط نمودارPrediction-Area (P-A)  مورد اعتبارسنجی قرار گرفت. بر طبق این نمودار، نقطه تلاقی منحنی­های نرخ پیش­بینی و مساحت اشغال­شده مربوطه، مقدار 78 را نشان داد که توان بالای مدل مذکور را در معرفی نواحی امیدبخش مس ثابت می­کند. در مدل پتانسیل معدنی مس ایجادشده، عمده نواحی پرپتانسیل مس در نیمه شمالی ورقه و در زیرزون طارم معرفی شده است که به خوبی با محل کانسارهای قدیمی مس نظیر خلیفه­لو، چرگر، الوند، حصار و دوه‌یاتاقی منطبق می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Application of AHP-TOPSIS method to model copper mineral potencial in the Abhar 1:100000 geological map, NW Iran

نویسندگان [English]

  • Yousef Bahrami
  • Hosein Hasani
  • Abbas Maghsoudi
Department of Mining Exploration, Faculty of Mining Engineering and Metallurgy, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

Extended abstract
Introduction
Fulfillment of exploration activities is costly and time-consuming, which reveals the necessity of mineral prospectivity mapping (MPM) for identifying highly mineral potential zones. MPM as a key procedure, integrates multiple geoscience datasets performed across different scales. In this regard, Various methods have been developed over the past three decades that are basically categorized into either data-driven or knowledge-driven methods. This study aims to represent a new combinatorial MCDM method called AHP-TOPSIS to outline highly potential Cu zones in the Abhar area.
Material and Methods
The Abhar area is located southeast of Zanjan province, NW Iran. From the structural and metallogenic point of view, the study area has been composed of two segregated sub-zones: Tarom sub-zone and Soltanieh sub-zone. Most of the known Cu occurrences are of vein type, the overwhelming of which have outspread in the northern part of the study area (Tarom sub-zone). A slight body of profoundly eroded leucogranite is partially manifested in the low topography circa Doran village, named Doran granite which affiliates to late Precambrian. The granite and some small sporadic Eocene granites have intruded into Kahar and Soltanieh dolomites, respectively. This could promise the skarn mineralization of iron and copper in this area.
The research presented here endeavors to outline Cu potential zones based on subsequent investigations appertaining to the Abhar area using AHP-TOPSIS. This method is a hybrid method, in which the task of AHP is to determine the weights of criteria and sub-criteria, and thereinafter the TOPSIS method is concerned with order preference of decision alternatives. Despite the ability and competence of each of the foregoing methods, experience has affirmed that the combination of two MCDM methods and the concurrent use of their potentials gives better results and leads to eminent performance for the MPM. The first paramount step in mineral prospectivity mapping is to identify and collect geospatial data pertinent to the deposit type-sought. In the present study, aforesaid data is taken into consideration based on the data availability alongside theoretical and empirical analysis of the spatial association between Cu mineral deposit and various data. Hereupon, seven evidential layers, as predictor maps, were propounded to outline Cu potential zones. They consisted of multi-element geochemical signatures pertinent to Cu mineralization, closeness to late Eocene intrusive contacts, closeness to late Eocene volcanic rocks, proximity to the faults, and vicinity to argillic, phyllic and propylitic alterations.
 
 
Modeling and Discussion
The spatial evidence values in the obtained maps do not involve identical maximum and minimum values. Inevitably, the evidential values of mentioned maps were transformed into a new space. Then concentration-area (C-A) fractal model, was applied to classify spatial values of evidential maps. Next, AHP-TOPSIS MCDM method was applied to generate Cu prospectivity map. In this regard, AHP method was used to determine the weights of criteria and sub-criteria and TOPSIS method was used to rank the alternatives. For this, a decision matrix of 361638×7 was created that comprises 7 criteria (evidential maps) and 361,638 alternatives (each of which corresponds to a particular cell with a certain coordinate in the evidence layers). At the end, the Cu prospectivity map was generated. To evaluate the efficiency of prospectivity map obtained by AHP-TOPSIS method, the Predication-Area (P–A) plot was applied. According to the result of this P-A plot, the intersection point for this prospectivity model has been appeared in a high place, at about 78%. Thus, this map can be used as target map for subsequent detailed explorations.
Conclusion
The present study addresses the successful application of a new hybrid MCDM method called AHP-TOPSIS to generate a predictive model for Cu mineralization in the Abhar area. Despite the ability of two methods alone, experience has demonstrated that the combination of two or more MCDM methods eventuate to better results. Since the simultaneous use of these two methods will ultimately eventuate to the reduction of the target areas, this could indicate the high precision of the hybrid method in predicting target areas. Consequently, it was decided to use a combination of two methods, which are already mentioned. After generating the overlay prospectivity map, P–A plot was used to evaluate its efficiency in predicting favorable areas. Based on the results, the AHP-TOPSIS method can provide a potent tool for quantifying the specifications of geo-anomalies and delimiting target areas in mineral exploration programs

کلیدواژه‌ها [English]

  • Abhar
  • Concentration- area
  • Mineral prospectivity mapping
  • P-A plot
  • AHP-TOPSIS
-اختیارآبادی، م.، 1395. نقشه زمین­شناسی 1:100،000 ورقه ابهر، سازمان زمین­شناسی و اکتشافات معدنی کشور، تهران.
-بهرامی، ی.، حسنی، ی. و مقصودی، ع.، 1399. به کارگیری روش SWARA-MOORA به منظور تهیه نقشه پتانسیل معدنی مس در ورقه 1:100000 ابهر، ایران. نشریه مهندسی منابع معدنی، دوره 5، شماره 2، ص 1-20.
-قلیپور، م.، 1388. کنترل و معرفی نواحی امیدبخش معدنی در ورقه 1:100،000 زمین­شناسی ابهر، سازمان زمین­شناسی و اکتشافات معدنی کشور، تهران.
-کریمی، م.، ولدان­زوج، م.ج.، صاحب­الزمانی، ن.، عادلی­سرچشمه، ا.، الیاسی، غ.ر. و بحرودی، ع.، 1387. مدل‌سازی پتانسیل معدنی اندیس مس سوناجیل با استفاده از GIS و منطق فازی، نشریه علوم دانشگاه تربیت معلم، دوره 8، شماره 3، ص 25-44.
 
 
 
-Abedi, M., Torabi, A., Norouzi, Gh.N., Hamzeh, M. and Elyasi, Gh.R., 2011- PROMETHEE II: A knowledge-driven method for copper exploration, Computer & Geosciences, p. 1-9.
-Abedi, M., Torabi, S.A. and Norouzi, G.H., 2013. Application of fuzzy-AHP method to integrate geophysical data in a prospect scale, a case study: seridune copper deposit, Boll Geofis Teor Appl, v. 54(2), p. 145-164.
-Afzal, P., Yousefi, M., Mirzaei, M., Ghadiri-Sufi, E., Ghasemzadeh, S. and Daneshvar Saein, L., 2019. Delineation of podiform-type chromite mineralization using Geochemical Mineralization Prospectivity Index (GMPI) and staged factor analysis in Balvard area (southern Iran). Journal of Mining and Environment 10, v. 705-715.
-Agterberg, F.P. and Cheng, Q., 2002. Conditional independence test for weights-of-evidence modeling. Natural Resources Research, v. 11(4), p. 249-255.
-An, P., Moon, W.M. and Rencz, A., 1991. Application of fuzzy set theory for integration of geological, geophysical and remote sensing data. Canadian Journal of Exploration Geophysics, v. 27(1), p. 1-11.
-Asadi, H.H., Sansoleimani, A., Fatehi, M. and Carranza, E.J.M., 2016. An AHP–TOPSIS Predictive Model for District-Scale Mapping of Porphyry Cu–Au Potential: A Case Study from Salafchegan Area (Central Iran). Natural Resources Research, p. 1-13.
-Ataei, M., Sereshki, F., Jamshidi, M. and Jalali, S.M.E., 2008. Suitable mining method for Golbini No. 8 deposit in Jajarm (Iran) using TOPSIS method. Mining Technology.
-Bahrami, Y., Hassani, H. and Maghsoudi, A., 2018. Investigating the capabilities of multispectral remote sensors data to map alteration zones in the Abhar area, NW Iran. Geosystem Engineering, doi: 10.1080/12269328.2018.1557083.
-Bahrami, Y., Hassani, H. and Maghsoudi, A., 2019. BWM-ARAS: A new hybrid MCDM method for Cu prospectivity mapping in the Abhar area, NW Iran. Spatial statistics, 33. https://doi.org/10.1016/j.spasta.2019.100382.
-Bahrami, Y., Hassani, H. and Maghsoudi, A., 2020. Landslide susceptibility mapping using AHP and fuzzy methods in the Gilan province, Iran. GeoJournal. https://doi.org/10.1007/s10708-020-10162-y.
-Bonham-Carter, G.F., 1994. Geographic Information Systems for geoscientists-modeling with GIS, Computer methods in the geoscientists, v. 13, 398 p.
-Bonham-Carter, G.F., Agterberg, F.P. and Wright, D.F., 1988. Integration of geological datasets for gold exploration in Nova Scotia: Photogrammetric Engineering and Remote Sensing, v. 54(11), p. 1585-1592.
-Bonham-Carter, G.F., 1994. Geographic information systems for geoscientists-modeling with GIS. Computer methods in the geoscientists, v. 13, 398 p.
-Carranza, E.J.M., 2008. Geochemical anomaly and mineral prospectivity mapping in GIS, v. 11, 365 p.
-Cheng, Q., Agterberg, F.P. and Ballantyne, S.B., 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, v. 51(2), p. 109-130.
-Chung, C.F. and Agterberg, F.P., 1980. Regression models for estimating mineral resources from geological map data. Mathematical Geology, v. 12 (5), p. 473-488.
-De Araújo, C.C. and Macedo, A.B., 2002. Multicriteria geologic data analysis for mineral favorability mapping: application to a metal sulphide mineralized area, Ribeira Valley Metallogenic Province, Brazil. Natural Resources Research, v. 11(1), p. 29-43.
-Forster, H., 1978. Mesozoic - Cenozonic metallogensis in Iran. Geological Society London, v. 135, p. 443-445.
-Ghaeminejad, H., Abedi, M., Afzal, P., Zaynali, F. and Yousefi, M., 2020. A fractal-based outranking approach for mineral prospectivity analysis. Bollettino di Geofisica Teorica e Applicata (In press).
-Hirayama, K., Haghipour, A. and Hajian, J., 1966. Geological map of Zanjan. Geological Survey of Iran (GSI).
-Hosseinali, F. and Alesheikh, A.A., 2008. Weighting spatial information in GIS for copper mining exploration. American Journal of Applied Sciences, v. 5(9), p. 1187-1198.
-Hwang, C.L. and Yoon, K., 1981. Methods for multiple attribute decision making. In Multiple attribute decision making, Springer, Berlin, Heidelberg, p. 58-191.
-Karimi, M., Menhaj, M.B. and Mesgari, M.S., 2008. Mineral potential mapping of copper minearls using fuzzy logic in GIS invironment, ISPRS 2008, Beijing, China.
-Moreira, F.R., Almeida-Filho, R. and Câmara, G., 2003. Spatial Analysis techniques applied to mineral prospecting: an evaluation in the Poços de Caldas Plateau. Brazilian Journal of Geology, v. 33(2), p. 183-190.
-Nouri, R., Jafari, M.R., Arian, M., Feizi, F. and Afzal, P., 2013. Prospection for Copper Mineralization with Contribution of Remote Sensing, Geochemical and Mineralographicaldata in Abhar 1:100,000 Sheet, NW Iran. Archives of Mining Sciences, v. 58(4), p. 1071-1084.
-Parsa, M., Maghsoudi, A. and Ghezelbash, R., 2016. Decomposition of anomaly patterns of multi-element geochemical signatures in Ahar area, NW Iran: a comparison of U-spatial statistics and fractal models. Arabian Journal of Geosciences, v. 9(4), p. 1-16.
-Parsa, M., Maghsoudi, A., Yousefi, M. and Sadeghi, M., 2016a. Prospectivity modeling of porphyry-Cu deposits by identification and integration of efficient mono-elemental geochemical signatures. Journal of African Earth Sciences, v. 114, p. 228-241.
-Pazand, K. and Hezarkhani, A., 2015. Porphyry Cu potential area selection using the combine AHP-TOPSIS methods: a case study in Siahrud area (NW, Iran). Earth Science Informatics, v. 8(1), p. 207-220.
-Pazand, K., Hezarkhani, A. and Ataei, M., 2012. Using TOPSIS approaches for predictive porphyry Cu potential mapping: A case study in Ahar-Arasbaran area (NW, Iran). Computers and Geosciences, v. 49, p. 62-71.
-Porwal, A., Carranza, E.J.M. and Hale, M., 2003. Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Natural Resources Research, v. 12(1), p. 1-25.
-Porwal, A., Carranza, E.J.M. and Hale, M., 2004. A hybrid neuro-fuzzy model for mineral potential mapping mathematical geology, Mathematical Geosciences, v. 36 (7), p. 803-826.
-Saaty, T.L., 1977. A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, v. 15(3), p. 234-281.
-Saaty, T.L., 1980. The Analytical Hierarchy Process: Planning, Priority Setting, Resource Allocation. McGraw-Hill, New York, 475 p.
-Saaty, T.L., 1990. Decision making for leaders: the analytic hierarchy process for decisions in a complex world.  RWS.
-Saaty, T.L., 2005. The Analytic Hierarchy and Analytic Network Processes for the Measurement of Intangible Criteria and for Decision-Making. In Multiple criteria decision analysis: state of the art surveys,  Springer New York, 405 p.
-Samimi Namin, F., Shahriar, K., Ataee-Pour, M. and Dehghani, H., 2008. A new model for mining method selection of mineral deposit based on fuzzy decision making. Journal of the Southern African Institute of Mining and Metallurgy, v. 108(7), p. 385-395.
-Shahsavar, S., Jafari Rad, A., Afzal, P., Nezafati, N. and Akhavan Aghdam, M., 2019. Prospecting for polymetallic mineralization using step-wise weight assessment ratio analysis (SWARA) and fractal modeling in Aghkand Area, NW Iran. Arabian Journal of Geosciences, v. 12 (7), p. 248-257.
-Yousefi, M. and Carranza, E.J.M., 2015. Geometric average of spatial evidence data layers: a GIS-based multi-criteria decision-making approach to mineral prospectivity mapping. Computers and Geosciences, v. 83, p. 72-79.
-Yousefi, M. and Carranza, E.J.M., 2015. Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computers & Geosciences, v. 74, p. 97-109.