تعیین محیط تکتونیکی، پتانسیل کانی‌زایی و شرایط تبلور توده کوارتزدیوریت‎بیوتیت‎دار شمال شرق دلیجان با کاربرد شیمی بیوتیت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین‎شناسی، دانشگاه پیام نور، تهران، ایران

2 گروه زمین‎شناسی، دانشگاه شهید بهشتی، دانشکده علوم زمین، تهران، ایران

چکیده

معدن آهن سرویان به­طور ژنتیکی با توده گرانیتوئیدی سرویان همراه است. هدف از این پژوهش بررسی سنگ‎شناسی، کانی‎شناسی و تعیین شرایط تشکیل کانی‎های بیوتیت ‎توده کوارتزدیوریت ‎بیوتیت‎دار سرویان است و در این تحقیق در مورد اهمیت مطالعه این کانی در تعیین محیط تکتونیکی، پتانسیل کانی‎زایی و شرایط تبلور این توده بحث شده است. آنالیز الکترون میکروپروب بیوتیت‎های این توده نشان می‎دهد که این کانی‎ها از نوع بیوتیت‎های منیزیم‎دار غنی از Ti و Mg و فقیر ازAl  و Fe هستند. محتوای AlT بیوتیت‎ها در حدود 37/2-52/2، با (ƩFeO)/(ƩFeO+MgO) بین 55/0 تا 58/0 و تمرکز MgO در گستره 77/12-94/13 درصد وزنی است. این شرایط نشان می‎دهد که توده‎ی مذکور متعلق به سری ماگمایی کالک‎آلکالن بوده و از رده گرانیت‎های کوهزایی نوع I است که ماگمای منشأ آن در یک محیط فرورانش، حاصل از ذوب پوسته و گوشته تشکیل شده است. بیوتیت‎ها توده سرویان در دمای 750 درجه سانتی‎گراد و در شرایط فوگاسیته اکسیژن بالا و تحت فشار 6/0-1/1 کیلوبار متبلور شده‎اند. در نتیجه چگونگی تشکیل بیوتیت‎ها تایید می‎کند که توده سرویان در تشکیل ته‎نشست‎های آهن اسکارنی منطقه مشارکت داشته است.

کلیدواژه‌ها


عنوان مقاله [English]

Study of biotite quartzdiorite rocks of NW Delijan by using biotite mineral chemistry

نویسندگان [English]

  • Mahboobeh Jamshidibadr 1
  • Mahnaz Khademi Parsa 2
  • Faribourz Masoudi 2
1 Department of Geology, Payame Noor University, Tehran, Iran
2 Department of Geology, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Extended abstract
Introduction
The composition of skarn's mineralizing fluids is closely related to the physicochemical conditions prevailing during the cooling and crystallization of magma. Biotite is an effective indicator for determining the physio-chemical conditions prevailing during the cooling and crystallization of magma. In this study, the biotite composition of Sarvian biotite quartz diorite from Urmia-Dokhtar magmatic arc was investigated to estimate the magma crystallization conditions and also to determine the petrological and metallogenic characteristics of the granitoid rocks.
Materials and methods
The study area is located 15 km northeast of Delijan city and in Markazi province (Figure 1). Miocene Sarvian quartzdiorite rocks are classified into three subgroups: quartzdiorite, micro quartzdiorite and biotite quartzdiorite. In this study, 21 spots of Sarvian biotite quartzdiorite were analyzed at the Iran Mineral Processing Research Center (Table 1).
Results and discussion
The biotites of Sarvian granitoid are crystallized at a temperature of about 750 ° C, oxygen fugacity is between 10-11 and 10-13 and the pressure is about 0.6-1.1 kbar. The mentioned crystallization conditions indicate that the biotite quartzdiorite rocks of Sarvian crystallized at high temperature, shallowly and under high oxygen fugacity conditions. In addition, it shows that Sarvian biotite quartzdiorite has a high chance of mineral exploration. Placement of Sarvian biotite quartzdiorite rocks in Cretaceous limestones and Eocene pyroclastics, crystallization at a pressure of about 1 kbar and the mentioned crystallization conditions, indicate the formation of skarns in the region. The formation of skarn iron ores in the area is a confirmatory examination that has been performed on the studies.
Conclusion
Emplacement of Sarvian biotite quartzdiorite rocks are at shallow depth and crystallization at high temperature conditions. High magnesium calc-alkaline magmatic series, high oxygen fugacity and type I orogenic granites from subduction of the oceanic crust below the continental plate leads to magma which is the result of melting and mixing of crust and mantle. So it has created suitable conditions for the formation of metal skarns.

کلیدواژه‌ها [English]

  • Biotite
  • Sarvian biotite quartzdiorite
  • Delijan
  • Urmieh-Dokhtar zone
  • Crystallization conditions
-جمشیدی‎بدر، م.، خادمی پارسا، م. و مسعودی، ف.، 1394. زمین فشار - دماسنجی توده‎ی گرانیتوئیدی سرویان (شمال‎شرق دلیجان) با کاربرد شیمی کانی‎های آمفیبول و فلدسپار: مجله بلورشناسی و کانی­شناسی ایران، شماره‎ 4، ص 819 -830.
-خادمی پارسا، م.، 1396. پترولوژی توده‎های نفوذی و نیمه‎عمیق کانه‎ساز و هاله‎های دگرگونی همراه در شمال‎شرق دلیجان (زون ارومیه دختر)، پایان‎نامه دکتری رشته پترولوژی-زمین‎شناسی، دانشگاه شهید بهشتی، 428 ص.
-خادمی پارسا، م. و مسعودی، ف.، 1395. بررسی الگوهای اکتشافی ذخایر آهن اسکارنی با استفاده از تصاویر ماهواره ای ETM در شمال‎شرق دلیجان: پژوهش‎های دانش‎زمین، شماره ‎3، ص 169-184.
-قلمقاش، ج.، 1374. مطالعه پلوتونیسم ترشیری در منطقه جنوب قم (محدوده ورقه 100000/1 کهک)، پایان­نامه کارشناسی­ارشد، دانشگاه شهید بهشتی، 204 ص.
-قلمقاش، ج. و باباخانی، ع.ر.، 1372. نقشه زمین­شناسی 100000/1 کهک، سازمان زمین­شناسی و اکتشافات معدنی کشور.
 
 
 
-Abdel-Rahman, A., 1994. Nature of biotites from alkaline, calc-alkaline and peraluminous magmas: Journal of Petrology, v. 35, p. 525-541.
-Aftabi, A. and Atapour, H., 2000.  Regional aspects of shoshonitic volcanism in Iran: Episodes, v. 23, p. 119-125.
-Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monie, P., Meyer, B. and Wortel, R., 2011. Zagros orogeny: a subduction dominated process. In: Lacombe, O., Grasemann, B., Simpson, G. (Eds.), Geodynamic Evolution of the Zagros: Geological Magazine, v. 148, p, 692-725.
-Albuquerque, C.A.R., 1973. Geochemistry of biotites from granitic rock northern Portugal: Geochimica et Cosmochimica Acta, v. 37, p. 1779-1802.
-Allen, M., Jackson, J. and Walker, R., 2004.  Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates: Tectonics, v. 23, p. 1-16.
-Amidi, S.M., Emami, M.H. and Michel, R., 1984. Alkaline character of Eocene volcanism in the middle part of Central Iran and its geodynamic situation: Geologische Rundschau, v. 73, p. 917-932.
-Barriére, M. and Cotton, J., 1979. Biotites and associated minerals as markers of magmatic fractionation and deuteric equilibration in granite: Contributions to Mineralogy and Petrology, v. 70, p. 183-192.
-Blundy, J.D. and Holland, T.J.B., 1990. Calcic amphibole equilibria and a new amphibole plagioclase geothermometer: Contributions to Mineralogy and Petrology, v. 104, p. 208-224.
-Deer, W.A., Howie, R.A. and Zussman, J., 1966. An introduction to the rock- forming minerals, UK: Longman Group UK Ltd, 483 p.
-Dilek, Y. and Sandvol, E., 2009. Seismic structure, crustal architecture and tectonic evolution of the Anatolian-African plate boundary and the Cenozoic orogenic belts in the eastern Mediterranean region, Geological Society of London: Special Publication, v. 327, p. 127-160.
-Dymek, R.F., 1983.  Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneisses West Greenland: American Mineralogist, v. 68, p. 880-889.
-Foster, M.D., 1960. Layer charge relations in the dioctahedral and trioctahedral micas: American Mineralogist, v. 45, p. 383-398.
-Ghadami, G., Shahre Babaki, A.M. and Mortazavi, M., 2008.  Post-Collisional Plio-Pleistocene Adakitic Volcanism in Centeral Iranian Volcanic Belt: Geochemical and Geodynamic Implications: Journal of Sciences, Islamic Republic of Iran, v. 19, p. 223-235.
-Hassanzadeh, J., 1993. Metallogenic and tectonomagmatic events in the SE sector of Cenozoic active continental margin of Central Iran (Shahrebabak area), Kerman province, Ph.D. thesis, University of California, Los Angeles, UCA, 204 p.
-Hecht, L., 1994. The chemical composition of biotite as an indicator of magmatic fractionation and metasomatism in Sn-specialised granites of the Fichtelgebirge (NW Bohemian Massif, Germany). In: Seltmann R., Kämpf H., Möller P. (Eds.), Metallogeny of collisional orogens: Czech Geological Survey, p. 295-300.
-Henry, D.J., Guidotti, C.V. and Thomoson, J.A., 2005. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermonmetry and Ti-substitution mechanisms: American Mineralogist, v. 90, p. 316-328.
-Holland, T. and Blundy, J., 1994. Non-ideal interactions in calcic-amphiboles and their bearing on amphibole-plagioclase thermometry: Contribution to Mineralogy and Petrology, v. 116, p. 433-447.
-Jahangiri, A., 2007. Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications: Journal of Asian Earth Sciences, v. 30, p. 433-47.
-Jiang, Y.H., Jiang, S.Y., Ling, H.F., Zhou, X.R., Rui, X.J. and Yang, W.Z., 2002. Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: implications for granitoid genesis, Lithos, v. 63, p. 165-187.
-McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, G., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Ndariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksoz, M.N. and Veis, G., 2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus: Journal of Geophysical Research, v. 105, p. 5695-5719.
-McClusky, S., Reilinger, R., Mahmoud, S., Ben Sari, D. and Tealeb, A., 2003. GPS constraints on Africa (Nubia) and Arabia plate motions: Geophysical Journal International, v. 155, p. 126-138.
-Nachit, H., Ibhi, A., Abia, E.H. and Ohoud, M.B., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites, Geomaterials (Mineralogy): Geoscience, v. 337, p. 1415-1420.
-Nachit, H., Razafimahefa, N., Stussi, J.M. and Carron, J.P., 1985. Composition chimique des biotites et typologie magmatique des granitoides: Comptes Rendus de l’Académie des Sciences Paris, v. 301, p. 813-819.
-Noyes, H.J., Wones, D.R. and Frey, F.A., 1983. A tale of two plutons: petrographic and mineralogic constraints on the petrogenesis of the Red Lake and Eagle Peak plutons, Central Sierra Nevada, California: The Journal of Geology, v. 91, p. 353-378.
-Omrani, J., Agard, P., Witechurch, H., Benoit, M., Prouteau, G. and Jolivet, L., 2008. Arc magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences: Lithos, v. 106, p. 380-398.
-Rieder, M., Cavazzini, G., Yakonov, Y.D., Frank-kanetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Muller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.L., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R., 1998. Nomenclature of the micas: Canadian Mineralogist, v. 36, p. 905-912.
-Schmidt, M.W., 1992. Amphibole composition in tonalite as a function of pressure an experimental calibration of the Al-hornblende barometer", Contribution to Mineralogy and Petrology, v. 110, p. 304-310.
-Shabani, A.A.T., Masoudi, F. and Tecce, F., 2010. An investigation on biotite composition from Mashhad granitoid rocks, NW Iran: Journal of Science of Islamic Republic of Iran, v. 21, p. 321-331.
-Spear, J.A., 1984. Micas in igneous rocks. In: Micas, Bailey, S.W. (Eds.), Mineralogical Society of America: Review in Mineralogy, v. 13, p. 299-356.
-Stone, D., 2000. Temperature and pressure variations in suites of Archean felsic plutonic rocks, Berens river area, northwest superior province, Ontario, Canada: The Canadian Mineralogist, v. 38, p. 455-470.
-Sun, W.D., Arculus, R.J., Kamenetsky, V.S. and Binns, R.A., 2004. Release of gold- bearing fluids in convergent margin magmas prompted by magnetite crystallization: Nature, v. 431, p. 975-978.
-Uchida, E., Endo, S. and Makino, M., 2007. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits: Resource Geology, v. 57, p. 47-56.
-Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals: American Mineralogist, v. 95, p. 185-187.
-Wones, D.P. and Eugeter, H.P., 1965. Stability of biotite: experiment, theory, and application: The American Mineralogist, v. 50, p. 1228-1272.
-Wyborn, D. and Sun, S.S., 1984. Sulphur- under saturated magmatism: A key factor for generating magma-related copper-gold deposits: AGSO Research Newsletter, v. 21, p. 7-8.
-Zhou, Z.X., 1986. The origin of intrusive mass in Fengshandong, Hubei province: Acta Petrologica Sinica, v. 2, p. 59-70.