عوامل موثر در پیدایش تافونی در ماسه‌سنگ‌های نئوژن منطقه اشتهارد و مردآباد (استان البرز)

نوع مقاله : علمی -پژوهشی

نویسندگان

گروه زمین‌شناسی، دانشکده علوم پایه، دانشگاه بوعلی سینا، همدان، ایران

چکیده

اشکال تافونی در ماسه­سنگ­های نئوژن اشتهارد (جنوب باختری کرج)، واقع در بخش شمال باختری پهنه ساختاری ایران مرکزی، منظره قابل توجهی را در این گروه از سنگ­ها به وجود آورده­اند. مطالعه این اشکال فرسایشی در دو برش شمال اشتهارد و مردآباد به ترتیب با ضخامت تقریبی 820 تا 1080 متر بر روی نهشته­های ماسه­سنگی صورت گرفت. طی بررسی­های میدانی مشخص شد که در برش شمال اشتهارد ضخامت لایه­های ماسه­سنگی، ابعاد و گستردگی تافونی­ها (به ویژه در دامنه جنوب­خاوری لایه­های ماسه­سنگی) و درزه­های پرشده با ژیپس، بیشتر می­باشد. بررسی­های سنگ­نگاری نشان داد که ماسه­سنگ­های برش شمال اشتهارد از نوع فلدسپاتیک ولکارنایت (Q11 F35 RF54) و برش مردآباد از نوع ولکارنایت (Q5 F12 RF83) می­باشند. در ماسه­سنگ­های برش اشتهارد مقادیر فلدسپات و میزان دگرسانی بیشتر و مقادیر سیمان کلسیتی و دولومیتی کمتر از برش مردآباد است که می­تواند ناشی از انحلال سیمان کربناتی باشد. آنالیز XRD بر روی مواد هوازده در داخل تافونی­ها، حضور کانی­های رسی ایلیت و کائولینیت را برای نمونه برش اشتهارد و کانی رسی ایلیت را برای نمونه برش مردآباد نشان می­دهد. همچنین داده­های بادسنجی، جهت باد غالب در منطقه مورد مطالعه را باختری و شمال­ باختری نشان می­دهد. در مجموع ضخامت زیاد لایه­های ماسه­سنگی، وجود درزه­های پرشده با ژیپس، فراوانی کانی­های نامقاوم از قبیل فلدسپات­های (ارتوز و پلاژیوکلاز) دگرسان شده، انحلال سیمان کربناته طی هوازدگی، تخلخل بین دانه­ای بالا و نیز وزش بادهای غالب (به­ویژه در جهت باختر)، باعث گسترش و پراکندگی بیشتر تافونی­ها در برش شمال اشتهارد نسبت به برش شمال مردآباد گردیده است. 

کلیدواژه‌ها


عنوان مقاله [English]

Effective factors in formation of tafoni in the Neogene sandstones of Eshtehard and Mardabad areas (Alborz province)

نویسندگان [English]

  • Masoomeh Zaheri
  • Behrouz Rafiei
  • Reza Alipoor
Department of Geology, Faculty of Basic Sciences, University of Bu-Ali Sina, Hamedan, Iran
چکیده [English]

IntroductionTafoni weathering refers to large cave-like holes ranging from a few decimeters to several meters wide. They develop often in the medium and coarse-grained silicate rocks such as sandstones, conglomerates and granites in various areas, under arid and semi-arid climate conditionMaterials and MethodsTo identify the tafoni forms, we measured the morphological features (such as the dimensions and extent) of the tafoni in the sandstone layers in the north of Eshtehard and Mardabad sections. A total of ten medium to coarse-grained sandstone samples were selected from the lens-liked channel deposits. Framework mineral composition (modal analysis) was quantified using the point-counting method (300-500 point) of Gazzi and Dickinson, as described by Ingersoll et al. (1984).Results and discussionField surveyTo calculate the dimensions of the tafoni in the sandstone layers, the width (W), height (H) and depth (D) of the ninety eight tofoni were measured in different parts of two sections. The higher average values of W than the mean values of H and D and also the higher W/D values than H/D indicate that the tafoni forms in the sandstone layers are more elliptical and semicircular (W> H> D).PetrographyBased on the petrographical and modal analysis, the mean grain size in the sandstone samples are about 0.5 mm with weak to moderate sorting and rounded to subrounded grains. Sandstone samples from the Eshtehard section include high amount of the igneous, sedimentary and metamorphic rock fragments (average 53.8%), and the feldspar (orthoclase and plagioclase) (average 35.4%), and low amount of mono-and poly-crystallin quartz grains (average 10.8%) with point, straight to concavo-convex grain contacts. In turn, the Mardabad sandstone samples show higher proportion of the igneous and sedimentary rock fragments (average 83%) and lower proportion of the feldspar (average 12%) and quartz (average 2.5%). The average amount of calcium carbonate in the Eshtehard and Mardabad sandstone samples are 6.4% and 10.4%, respectively.Dissolution of unstable grains such as feldspars (plagioclase and orthoclase) and carbonates (microcrystalline and fossil particles) and rock fragments due to the infiltration of acidic waters, promotes the development of porosity in the rock and reduces its resistance during chemical and physical weathering (Hamblin and Christiansen 2008). The Eshtehard sandstones include higher feldspar amount (Q11 F35 RF54) than that of the Mardabad sandstones (Q5 F12 RF83). According to microscopic studies, the Eshtehard sandstones have higher propotion of feldspar and in turn, higher chemical alteration. The development alteration in the feldspar grains can cause the weakness or loose texture and finally physical destruction of rock zones.Dissolution of calcite and dolomite cementLow proportion of calcite and dolomite cement due to dissolution have caused an increased amount of porosity of grains in the process of tofoni formation in the Eshtehard sandstones. The relatively high amounts of calcite cement and calcium carbonate rock fragments, low intergranular porosity and also point, straight to concavo-convex grain contacts created a relatively strong texture in the sandstones of the north of Mardabad section.ConclusionsThe presence of feldspar grains (in high amounts) and low amounts of calcite and dolomite cement, and consequently the increase of intergranular porosity (due to the alteration of feldspars and dissolution of calcite and dolomite cement) are important factors in the formation of tafoni in sandstone layers of the Eshtehard compared to the Mardabad sections. In general, the high thickness and extent of sandstone layers, chemical alteration of feldspars, and patch carbonate cement due to dissolution, control the formation and development of tafoni in the Eshtehard section.

کلیدواژه‌ها [English]

  • Eshtehard
  • Tafoni
  • Neogene sandstone
  • Mardabad
  1. -امینی‌بیرامی، ف. و اصغری‌کلجاهی، ا.، 1392. ارزیابی هوازدگی و فرسایش سنگ‌های آذرآواری مخروطی شکل روستای کندوان، نشریه زمین-شناسی مهندسی، جلد 9، شماره‌ 1، ص 2593-2614.
  2. -آقانباتی، س.ع.، 1383. زمین‌شناسی ایران، نشر سازمان زمین‌شناسی و اکتشافات معدنی کشور، 556 ص.
  3. -خانه‌باد، م.، موسوی‌حرمی، ر. و محبوبی، ا.، 1387. عوامل کنترل‌کننده هوازدگی حفره‌ای (تافونی) در گرانیت‌های جنوب مشهد و سازند شمشک واقع در بخش شمالی بینالود، مجله جغرافیا و توسعه ناحیه-ای، شماره 11، ص 187-208.
  4. -رهنمای‌راد، ج.، صاحب‌زاده، ب. و میرحاجی‌زاده، ع. ا.، 1387. توصیف هوازدگی و سست‌شدگی در گرانیتوئید زاهدان از دیدگاه مهندسی سنگ، فصلنامه زمین‌شناسی کاربردی، دوره 4، شماره 4، ص 247-257.
  5. -ظاهری، م.، رفیعی، ب. و علیپور، ر.، 1397. جاذبه-های زمین‌گردشگری در منطقه شمال اشتهارد، استان البرز، چهارمین همایش انجمن زمین‌شناسی ایران، ص 1-6.
  6. -مختاری‌حسن‌آبادی، م.ج.، امید، م.، حاجی‌احمد، ع.، جعفری، ع. و شعبانی‌شادیانی، م.ر.، 1395. پتانسیل سنجی توان باد در یک دوره یکساله در دو ایستگاه هواشناسی استان البرز، دهمین کنگره ملی مهندسی مکانیک بیوسیستم و مکانیزاسیون ایران، ص 1-18.
  7. -محمدی، س.د. و کتابی، ل.، 1392. معرفی اشکال تافونی و عوامل موثر بر تشکیل آن‌ها در سنگ‌های میگماتیتی منطقه سیمین (جنوب همدان)، دو فصلنامه ژئومورفولوژی کاربردی ایران، سال 1، شماره 2، ص 19-36.
  8. -مهدی‌زاده، س.، 1374. نقشه زمین‌شناسی 1:100000 کرج، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
  9. -یوسفی، م.، 1379. نقشه زمین‌شناسی 1:100000 اشتهارد، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
  10.  
  11.  
  12. -Ahmadi, A., Moghimi, E., Zamanzadeh, S.M. and Motamed, R., 2015. The Effect of Sandstone Composition on Distribution of Tafoni Landforms in the Aghajari Sandstone, Northwest of Masjed Soleyman, Iran, Advances in Geology, p. 1-10.
  13. -Conca, J.L. and Rossman, G.R., 1982. Core hardening of sandstone, Geology, v. 10, p. 520-523.
  14. -Carver, R.E., 1971. Procedures in Sedimentary Petrology, New York, Wiley, 635 p.
  15. -Cilek, V., 1998. The physical and chemical processes of sandstone pseudokarst formations. Das Sandsteinphanomen: Klima, Leben und Georelief. Libr. Czech Spel. Soc., v. 32, p. 134-153.
  16. -Cooke, R. and Smalley, I.J., 1968. Salt weathering in desert, Nature, v. 220, p. 1226-1227.
  17. -Dill, H.G., Weber, B. and Gerdes, A., 2010. Constraining the physical-chemical conditions of Pleistocene cavernous weathering in Late Paleozoic granites, Geomorphology, v. 121, p. 283-290.
  18. -El Sharkawy, M., 2009. Geomorphology of Tafoni caves in Dahab area south to Sinai Peninsula, Egyptian Journal of Environmental Change., v. 1, p. 72-80.
  19. -Fruhmann, S., Schnepfleitner, H. and Sass, O., 2014. Microclimatic factors controlling tafoni weathering in Tafraoute, Morocco, Geophysical Research Abstracts, v. 16, EGU2014-9785.
  20. -Folk, E., 1974. Petrography of Sedimentary Rocks, Hemphill Publishing Company, 182 p.
  21. -Gül, M. and Uslular, G., 2016. Geomorphological features and weathering of the Southern Submassif of the Menderes Massif (SW Turkey), Arabian Journal of Geosciences, v. 9, p. 1-16.
  22. -Grab, S. and Knight, J., 2015. Landscapes and Landforms of South Africa, World Geomorphological Landscapes Springer International Publishing Switzerland, p. 11-21.
  23. -Grab, S.W., Goudie, A.S., Viles, H.A. and Webb, N., 2011. Sandstone geomorphology of the Golden Gate Highlands National Park, South Africa, in a global context, p. 1-14.
  24. -Hamblin, W.K. and Christiansen, E.H., 2008. Earth's Dynamic Systems, Prentice Hall, Brigham Young University, tenth edition, 759 p.
  25. -Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D. and Sares, S.W., 1984. The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point – conting method. Journal of Sedimentary Petrology, v. 54, p. 103-116.
  26. -Khanehbad, M., Mahboubi, A. and Moussavi-Harami, R., 2005. Origin of honeycomb weathering and tafoni in cavernously weathered sandstones, Neyzar Formation, NE Iran, Geomorphology, Soils and Weathering, p. 1-10.
  27. -Mcbride, E.F. and Picard, M.D., 2004. Origin of honeycombs and related weathering forms in Oligocene macigno sandstone, Tuscan Coast near Livorno, Italy: Earth Surface Processes and Landforms, v. 29, p. 713-735.
  28. -Mcbride, E.F. and Picard, M.D., 2000. Origin and development of tafoni in tunnel spring tuff, Crystal Peak, Utah, USA, Earth Surface Processes and Landforms, v. 25, p. 869-879.
  29. -Moore, D.M. and Reynolds, R.C., 1997. X-ray Diffraction and the Identification and Analysis of Clay Minerals, second ed., Oxford University Press, 400 p.
  30. -Smith, B.J., 1978. The origin and geomorphic implications of cliff foot recesses and tafoni on limestone hamadas in the Northwest Sahara: Zeitschrift fuer Geomorphologie, v. 22, p. 21-43.
  31. -Turkington, A.V., 2004. Cavernous weathering, dynamical instability and self-organization, Earth surface processes and landforms, v. 29, p. 665-675.
  32. -Turkington, A.V., 1998. Cavernous weathering in sandstone: lessons to be learned from natural exposure, Quarterly Journal of Engineering Geology, v. 31, p. 375-383.
  33. -Tshang, H.L., 1966. Geomorphological observations on weathering forms in Hong Kong and some other humid regions of Southeast Asia, Chung Chi Journal, v. 5(2), p. 206-226.
  34. -Urban, J. and Gornik, M., 2017. Some aspects of lithological and exogenic control of sandstone morphology, the Świętokrzyskie (Holy Cross) Mts. case study, Poland, Geomorphology, v. 295, p. 773-789.
  35. -Viles, H.A., 2001. Scale issues in weathering studies, geomorphology, v. 41, p. 63-71.
  36. -Young, A.R.M., 1987. Salt as an agent in the development of cavernous weathering, Geology, v. 15(10), p. 962-966.
  37. -www.irimo.ir
  38. -www.wmo.int