شبیه‌سازی پارامترهای اقلیمی بارش و دبی استان تهران تحت مدل CanESM2 (براساس تطبیق دوشاخص خشکسالی SPI و SSI)

نوع مقاله : علمی -پژوهشی

نویسندگان

گروه انرژی‌های نو و محیط زیست، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، ایران

چکیده

بررسی خشکسالی به عنوان یکی از  مخاطرات طبیعی، که زندگی اکثر مردم به آن گره خورده است، بسیار حائز اهمیت است. جهت آماده سازی در مقابله با خشکسالی و کاهش خسارات ناشی از آن از روش‌های شبیه‌سازی، مدل‌سازی و تهیه مقدمات احتمال وقوع خشکسالی، استفاده می‌شود. در این مطالعه برای فراهم آوردن یک دید کلی از شرایط خشکسالی آینده از دو شاخص خشکسالی SSI و SPI استفاده گردید. در گام اول داده‌های مربوط به دبی و بارش با استفاده از مدل CanESM2 تحت سناریو انتشار RCP4.5 و مدل ریزمقیاس SDSM برای دوره 2050-2020 پیش‌بینی شد سپس با توجه به موقعیت جغرافیایی هر ایستگاه مناسب‌ترین تابع توزیع تجمعی برای هر شاخص در هر ایستگاه انتخاب گردید و امکان محاسبه شاخص‌های خشکسالی SSI و SPI فراهم گردید. نتایج نشان داد در دوره آتی براساس شاخص SSI، ایستگاه شریف‌آباد بیشترین مقدار خشکسالی (74/2-) را داراست و همچنین براساس شاخص  SPIبیشترین مقدار شاخص خشکسالی (17/2-) مربوط به ایستگاه لتیان است. لازم به ذکر است که تطابق دو شاخص در ایستگاه‌های نمرود و لتیان نیز با ترسیم متناظر منحنی تغییرات در طی دوره مطالعاتی نشان داد که اختلاف مقادیر عددی این دو کمیت، تنها برای 5 سال از انطباق مناسبی برخوردار نیست.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of precipitation and water flow as climatic parameters in Tehran province under CanESM2 model (based on an adaptation of SPI and SSI drought indices)

نویسندگان [English]

  • Mohammad Hossein Jahangir
  • Seyedeh Mahsa Mousavi Reineh
  • Mahnaz Abolghasemi
Renewable Energies and Environment Department, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
چکیده [English]

IntroductionIn the present study, to monitor droughts, the RCP4.5 scenario of the CanESM2 model of the Fifth IPCC Report and the most appropriate distribution functions of drought indicators were used to assess the current climate change and drought conditions in the present and future. Since the drought in an area can be affected by various climatic parameters, in this study, in addition to using SPI as a practical index, the important SSI index was also used to assess drought.Materials and MethodsIn the present study, the following steps were performed to monitor, evaluate, and inform the occurrence of droughts in Tehran province.1.Quality control of precipitation and  water flow parameters during the period 1986-20182.Prediction of these parameters during the period 2020-2050 based on daily output data of CanESM2 model under the RCP4.5 scenario using SDSM model3.Selecting the most appropriate distribution function with time series for both SPI and SSI index4.Drought detection and simulation using SPI and SSI drought characteristics during the next period (2050-2050).Results and discussionThe results of predicting the time series of precipitation and water flow using the DSM modelIn evaluating this model, two RMSE and MSE criteria were used, the results are given in Table 1  Mehr abad(rainfall)Latian(rainfall)Namrod(rainfall)Ahar(rainfall)Latian(Water flow)Firoz koh(Water flow)Namrod(Water flow)Jajrud (Water flow)RMSE0.350.390.390.353.70.361.062.67MSE-0.020.050.0040.051.030.06-0.0011.4 According to the results of Table 1, all eight stations had acceptable errors and it can be claimed that the SDSM model is more successful in predicting precipitation than Water flow.Selecting the most appropriate cumulative distribution functionsTables (2) and (3) show the ranking results of the studied functions for precipitation and forecasted data of meteorological and hydrometric stations. Table 2. Statistical characteristics of Smirnov Kolmogorov test according to annual (precipitation) data of meteorological stationsMehr abadLatianNamrodAharDistribution functionsrankP-ValuerankP-ValuerankP-ValuerankP-Value30.92620.91430.82630.732GAMMA40.85640.81240.64840.518Normal20.92310.93320.93320.848weibull 3p10.97630.87710.98510.932Fatigue life 3p0.9260.9580.9400.962R2-3.76-4.51-4.05-4.72ME3.924.654.185.03RMSE As shown in Table (2), at Mehrabad, Nimrud, and Ahar stations, the Fatigue life function was selected, and at the Latian station, the Wibble function was selected as the best cumulative distribution function.Table 3. Statistical Characteristics of Smirnov Klumography Test Based on Annual Data (Water flow)LatianFiroz kohNamrodJajrudDistribution functionsrankP-ValuerankP-ValuerankP-ValuerankP-Value10.98740.95240.96030.943Fatigue life 3p40.86910.97220.97510.965normal30.94220.96210.98920.949weibull 3p20.97130.96130.97040.926GAMMA0.9250.9080.9760.950R2-6.644-1-3.898-7.634ME6.4541.3304.0027.560RMSE Using the Kolmogorov Smirnov test and according to the P-Value, Normal distribution function shows a better fit for Firoozkooh and Jajroud stations The Weibull function also shows the best fit for the Namrod station, and the Fatigue life function shows the most suitable fit for the Latin station.Matching SSI and SPI drought indicators for the next periodThe results show that due to the use of distribution functions, the drought situation has had similar results based on two indicators with two different quantities. This means that the use of proposed distribution functions has greatly reduced the percentage of predictive errorConclusionThe results for future showed that Sharifabad station has the highest drought index (-2.74) based on SSI, and according to SPI, the highest drought index (-2.17) is for Latian station. It should be noted that the matching of the two indicators at Namroud and Latian stations was also studied and the results showed that the difference in the numerical values of these two quantities did not fit well for a 5 year period.

کلیدواژه‌ها [English]

  • Drought forecast
  • SPI
  • and SDI index
  • SDSM
  • Tehran province
  1. -احمدآبادی، ع. و صدیقی فر، ز.، 1397. پیش‌بینی اثرات تغییر اقلیم بر خصوصیات هیدروژئومورفولوژی حوضه آبریز کن براساس مدل ریز مقیاس نمایی آماری، نشریه تحقیقات کاربردی علوم جغرافیایی، دوره 18، شماره 51، ص 103-114. ‎
  2. -پیرنیا، ع.، گلشن، م. بیگنه، س. و سلیمان، ک.، 1397. ارزیابی وضعیت خشکسالی در حوضه آبخیز تمر (بالادست سد گلستان) با استفاده از شاخص‌های SPI و SPEI تحت شرایط اقلیمی حال و آینده، نشریه اکوهیدرولوژی، شماره 5(1)، ص 215 – 228.
  3. -جهانگیر، م.، خوش مشربان، م. و یوسفی، ح.، 1394. پایش و پیش‌‏بینی وضعیت خشکسالی با استفاده از شاخص بارندگی استاندارد (SPI) و شبکه عصبی پرسپترون چندلایه (مطالعه موردی: استان‏-های تهران و البرز)، اکوهیدرولوژی، شماره 2(4)، ص 417- 428.
  4. -دهقان، ز.، فتحیان، ف. و اسلامیان، س.، 1394. ارزیابی مقایسه‌ای مدل‌های SDSM،IDW و LARS- WG برای شبیه‌سازی و ریز مقیاس کردن دما و بارش، آب و خاک، شماره 29(5)، ص 1376- 1390.‎
  5. -رحیمی، ر. و رحیمی، م.، 1397. تحلیل مکانی و زمانی تغییر اقلیم در سال‌های آینده و مقایسه روش‌های ریزمقیاس‌نمایی SDSM،LARS-WG و شبکه عصبی مصنوعی (مطالعه موردی: استان خوزستان)، نشریه اکوهیدرولوژی، شماره 5(4)، ص 1161 - 1174.‎
  6. -رسولی، ع.، جهانبخش، س. و قاسمی، ا.، 1393. بررسی ارتباط بین پارامترهای مهم ابر و بارش روزانه در ایران، فصلنامه تحقیقات جغرافیایی، شماره 29(1)، ص 23-42.
  7. -رضایی، م.، نهتانی، م.، رضایی، م. و میرکازهی ریگی، م.، 1393. بررسی کارایی مدل ریز مقیاس نمایی آماری (SDSM) در پیش‌بینی پارامترهای دمایی در دو اقلیم خشک و فراخشک (مطالعه موردی: کرمان و بم)، نشزیه پژوهشهای مدیریت حوزه آبخیز، دوره 5، شماره 10، ص 117-131.
  8. -زارعی، ع.، مقیمی، م. و محمودی، م.، 1395. مدل‌سازی و پیش‌بینی خشکسالی فصلی با استفاده از شاخص RDI و مدل‌های سری زمانی (مطالعه موردی: ایستگاه سینوپتیک تهران)، مهندسی اکوسیستم بیابان، شماره 11، ص 105-116.
  9. -سلاجقه، ع.، رفیعی ساردویی، ا.، مقدم نیا، ع.، ملکیان، آ.، عراقی نژاد، ش.، خلیقی سیگارودی، ش. و صالح پورجم، ا.، 1396. بررسی کارایی مدل‌های ریزمقیاس‌نمایی آماری LARS-WG و SDSM در شبیه‌سازی دما و بارش، تحقیقات آب و خاک ایران، شماره 48(2)، ص 253 تا 262.
  10. -علیزاده، ا.، 1394. اصول هیدرولوژی کاربردی، انتشارات دانشگاه امام رضا، 942 ص.
  11. -عینی، م.، جوادی، س.، دلاور، م. و دارند، م.، 1397. ارزیابی داده‌های بارش پایگاه ملی اسفزاری در برآورد رواناب و پایش خشکسالی منطقه‌ای، اکوهیدرولوژی، شماره 5(1)، ص 99-110.
  12. -کریمی، م.، ستوده، ف. و رفعتی، س.، 1397. تحلیل روند تغییرات و پیش‌بینی پارامترهای حدی دمای ناحیه جنوبی دریای خزر، نشریه تحقیقات کاربردی علوم جغرافیایی، شماره 18(48)، ص 79-93.
  13. -یوسفی، م.، نوحه گر، ا.، خسروی، ز. و عزیز آبادی فراهانی، م.، 1394. مدیریت و پهنه‏‌بندی خشکسالی با استفاده از شاخص‏‌های SPI و RDI مطالعه موردی: استان مرکزی، نشریه اکوهیدرولوژی، شماره 2)3)، ص 337-344.
  14. -نوروزی، ا.، رستمی، ن. و جهانگیر، م.، 1397. پیش‏بینی وضعیت خشکسالی طی دوره 2018-2037 تحت رویکرد تغییر اقلیم (مطالعه موردی: ایستگاه‌های ایلام و دهلران)، شماره اکوهیدرولوژی، شماره 5(3)، ص 977-991.
  15.  
  16.  
  17. -Abramowitz, M. and Stegun, I.A., 1965. Handbook of mathematical functions with formulas, graphs, and mathematical table. In US Department of Commerce, National Bureau of Standards Applied Mathematics series 55.
  18. -Arora, V.K., Scinocca, J.F., Boer, G.J., Christian, J.R., Denman, K.L., Flato, G.M., Kharin, V.V., Lee, W.G. and Merryfield, W.J., 2011. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases, Geophysical Research Letters, 38(5), Doi 10.1029/2010 gl046270.
  19. -Bazrafshan, J. and Khalili, A., 2013. Spatial Analysis of Meteorological Drought in Iran from 1965 to2003. Desert, v. 18(1), p. 63-71.
  20. -Fowler, H.J., Blenkinsop, S. and Tebaldi, C., 2007. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology: A Journal of the Royal Meteorological Society, v. 27(12), p. 1547-1578.
  21. -Jain, V.K., Pandey, R.P., Jain, M.K. and Byun, H.R., 2015. Comparison of drought indices for appraisal of drought characteristics in the Ken River Basin, Weather and Climate Extremes, v. 8, p. 1-11.
  22. -Kabiri, R., Kanani, V. and Andrew, C., 2012. Climate Change Impacts on River Runoff in Klang Watershed in West Malaysia. J. Clim. Res, v. 48, p. 57-71.
  23. -Lee, K., Ahn, J., Kim, B., Jung, T., Lee, S., Lim, M., Moon, C.R., Jung, S., Lee, J., Kim, H. and Lee, D., 2011. SNR Performance Comparison of 1.4 um Pixel: FSI, Light-guide, and BSI. IISW2011, 3 p.
  24. -Liu, X., Xu, X., Yu, M. and Lu, J., 2016. Hydrological drought forecasting and assessment based on the standardized stream index in the Southwest China, Procedia Engineering, v. 154, p. 733-737.
  25. -Lopes, P.M.D.A.G.G., 2008. Assessment of climate change statistical downscaling methods: Application and comparison of two statistical methods to a single site in Lisbon (Doctoral dissertation, FCT-UNL).
  26. -Lorenzo-Lacruz, J., Moran-Tejeda, E., Vicente-Serrano, S.M. and Lopez-Moreno, J.I., 2013. Streamflow droughts in the Iberian Peninsula between 1945 and 2005: spatial and temporal patterns, Hydrology and Earth System Sciences, v. 17(1), p. 105-119.
  27. -Madadgar, S. and Moradkhani, H., 2013. A Bayesian framework for probabilistic seasonal drought forecasting. Journal of Hydrometeorology, v. 14(6), p. 1685-1705.
  28. -M McKee, T.B., Doesken, N.J. and Kleist, J., 1993. January. The relationship of drought frequency and duration to time scales, In Proceedings of the 8th Conference on Applied Climatology, v. 17( 22), p. 179-183.
  29. -Fenta Mekonnen, D. and Disse, M., 2018. Analyzing the future climate change of Upper Blue Nile River basin using statistical downscaling techniques, Hydrology and Earth System Sciences, v. 22(4), p. 2391-2408.
  30. -Oguntunde, P.G., Abiodun, B.J. and Lischeid, G., 2017. Impacts of climate change on hydro-meteorological drought over the Volta Basin, West Africa, Global and Planetary Change, v. 155, p. 121-132.
  31. -Prediction of Climate Change Induced Hydrogeomorphology by using SDSM in CAN Watershed, 2018. Journal of Applied Researches in Geographical Sciences, v. 18(51), p. 103-114.
  32. -Samadi, S., Ehteramian, K. and Sarraf, B.S., 2011. SDSM ability in simulate predictors for climate detecting over Khorasan province. Procedia-Social and Behavioral Sciences, v. 19, p. 741-749.
  33. -Shi, J., Wang, H., Xu, J., Wu, J., Liu, X., Zhu, H. and Yu, C., 2007. Spatial distribution of heavy metals in soils: a case study of Changxing, China. Environmental Geology, v. 52(1), p. 1-10.
  34. -Uml, M.J., Kim, Y., Park, D. and Kim, J., 2017. Effects of different reference periods on drought index (SPEI) estimations from 1901 to 2014. Hydrology and Earth System Sciences, v. 21(10), p. 4989–5007. https://doi.org/10.5194/hess-21-4989-2017
  35. -Vicente-Serrano, S.M., Begueria, S. and Lopez-Moreno, J.I., 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index, Journal of climate, v. 23(7), p. 1696-1718.
  36. -Vicente-Serrano, S.M., Lopez-Moreno, J.I., Beguer’ia, S., Lorenzo-Lacruz, J., Azorin-Molina, C. and Moran-Tejeda, E., 2011. Accurate computation of a streamflow drought index. Journal of Hydrologic Engineering, v. 17(2), p. 318-332.
  37. -Vlček, O. and Huth, R., 2009. Is daily precipitation Gamma-distributed?: Adverse effects of an incorrect use of the Kolmogorov–Smirnov test’, Atmospheric Research, Elsevier, v. 93(4), p. 759-766.
  38. -Wilby, R.L. and Dawson, C.W., 2007. SDSM 4.2-A decision support tool for the assessment of regional climate change impacts. User manual, 94 p.
  39. -Wilby, R.L., Dawson, C.W. and Barrow, E.M., 2002. SDSM—a decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, v. 17(2), p. 145-157.
  40. -Zheng, B., Lei, K., Liu, R., Song, S. and An, L., 2014. Integrated biomarkers in wild crucian carp for early warning of water quality in Hun River, North China, Journal of Environmental Sciences, v. 26(4), p. 909-916.