نقش تعیین‌کننده هدف مدل‌سازی و نیاز کاربر در انتخاب مدل برتر حساسیت زمین‌لغزش (مطالعه موردی: حوزه آبخیز تجن، استان مازندران)

نوع مقاله : علمی -پژوهشی

نویسندگان

گروه جنگل، مرتع و آبخیزداری، دانشکده منابع طبیعی و محیط‌زیست، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

چکیده

در این تحقیق، سه مدل داده‌کاوی شامل شبکه عصبی مصنوعی، ماشین بردار پشتیبان و بیشینه آنتروپی برای ارزیابی حساسیت زمین‌لغزش در حوزه آبخیز تجن استان مازندران انتخاب گردید. نتایج مدل‌ها با شش شاخص کارایی مدل شامل: 1) روند توزیع مساحتی کلاس‌های حساسیت، 2) روند توزیع عددی زمین‌لغزش‌ها در کلاس-های حساسیت، 3) خطای نوع یک مدل‌سازی (مثبت کاذب)، 4) خطای نوع دو مدل‌سازی (منفی کاذب)، 5) مساحت زیر منحنی نرخ موفقیت و 6) مساحت زیر منحنی نرخ پیش‌بینی بررسی گردید و براساس آن‌ها مدل‌ها رتبه‌بندی شدند. نتایج حاکی از آن بود که براساس شاخص اول، مدل‌های بیشینه آنتروپی، ماشین بردار پشتیبان و شبکه عصبی مصنوعی به ترتیب بهترین تا ضعیف‌ترین کارایی را نشان دادند. براساس شاخص دوم، به ترتیب مدل‌های ماشین بردار پشتیبان، بیشینه آنتروپی و شبکه عصبی مصنوعی بهترین تا ضعیف‌ترین عملکرد را ارائه نمودند. شاخص سوم با اشاره به پتانسیل خسارات اقتصادی ناشی از خطای مدل‌سازی بیانگر عملکرد مناسب مدل ماشین بردار پشتیبان بود و مدل‌های بیشینه آنتروپی و شبکه عصبی مصنوعی مشترکاً در درجات بعدی اهمیت قرار گرفتند. همچنین، شاخص چهارم با اشاره به پتانسیل تلفات جانی و مالی ناشی از خطای مدل‌سازی نشانگر عملکرد خوب مدل شبکه عصبی مصنوعی بود و مدل‌های بیشینه آنتروپی و ماشین بردار پشتیبان به ترتیب در رتبه دوم و سوم قرار گرفتند. نتایج حاصل از شاخص‌های پنجم و ششم بیانگر قدرت بالای یادگیری و تعمیم نتایج در مدل ماشین بردار پشتیبان بود و مدل‌های بیشینه آنتروپی و شبکه عصبی مصنوعی در درجات بعدی اهمیت قرار گرفتند. 

کلیدواژه‌ها


عنوان مقاله [English]

The determinant role of the modeling goal and end-user’s need in opting for the superior landslide susceptibility model (A case study: Tajan watershed, Mazandaran province)

نویسندگان [English]

  • Mehdi Sadighi
  • Baharak Motamedvaziri
  • Hasan Ahmadi
  • Abolfazl Moeini
Department of Forest, Range and Watershed Management, Islamic Azad University, Science and Research Branch, Tehran, Iran
چکیده [English]

IntroductionLandslides are isolated processes which may not be very large, but they can occur frequently and cause sizable damages. In most areas, there is a vivid pattern of irrational reaction while confronting such events. Nonetheless, such actions as avoidance, prevention, or restoration are more feasible for landslides than all other natural hazards because many discernable morphological symptoms appear months and even years before landslide occurrences. To the date, inherent driving forces of terrain processes have been identified quite well. Therefore, if we optimistically identify the landslide-prone areas, we would be able to reduce the landslide driven accidents through landslide susceptibility zonation. Nowadays, landslide susceptibility assessment endeavors have made great progress. Nevertheless, concurrent with advancements in developing susceptibility models, end-users have had many challenges selecting the superior model.Materials and methodsThis study is focused on the determinant role of the modeling goal and end-user’s need in opting for the superior model in the context of landslide susceptibility assessment and generally any endeavor with a spatial connotation. Hence, three widely used data mining models including artificial neural network (ANN), support vector machine (SVM), and maximum entropy (MaxEnt) were adopted for landslide susceptibility assessment in one of the pilot subbasins of the Tajan Watershed in Mazandaran Province. Models’ results were assessed using six performance criteria including 1) areal distribution of the susceptibility classes in each model, 2) distribution of landslides within the susceptibility classes in each model, 3) Error Type I (false positive), 4) Error Type II (false negative), 5) area under the success rate curve and 6) area under the prediction rate curve, based on which models were ranked.Results and discussionThe first criterion showed that the MaxEnt, SVM, and ANN, respectively, have the highest to the lowest performance. The second criterion showed that the SVM, MaxEnt, and ANN, respectively, have the highest to the lowest performance. The third criterion with economic losses connotation often associated with the modeling errors, indicated a good performance of the SVM model, while the MaxEnt and ANN were concurrently second-ranked. The fourth criterion with a connotation of casualties and economic losses often associated with the modeling errors indicated a good performance of ANN, followed by MaxEnt and SVM. The results regarding the fifth and sixth criteria both revealed a great learning and prediction power of the SVM model, followed by MaxEnt and ANN.ConclusionThe findings of this study attests for the notion that models superiority is rather a relative matter and despite the fact that landslide susceptibility results are resultant of local properties and cannot be generalized to other areas. Therefore opting for the superior model should be also carried out on the basis of engaging a wide range of performance criteria as well as acknowledging the modeling goal and end-user’s need.

کلیدواژه‌ها [English]

  • Maximum Entropy
  • Artificial Neural Network
  • Support vector machine
  • False positive
  • False negative
  1. -حسین زاده، م.، ثروتی، م.، منصوری، ع.، میرباقری، ب. و خضری، س.، 1388. پهنه‌بندی ریسک وقوع حرکات توده‌ای با استفاده از مدل رگرسیون لجیستیک، مطالعه موردی محدوده مسیر سنندج- دهگلان، فصلنامه زمین‌شناسی ایران، شماره 11، ص 57-68.
  2. -شادفر، ص.، یمانی، م.، قدوسی، ج. و غیومیان، ج.، 1386. پهنه‌بندی خطر زمین‌لغزش با استفاده از روش تحلیل سلسله مراتبی (مطالعه موردی: حوضه آبخیز چالکرود تنکابن)، مجله پژوهش و سازندگی در منابع طبیعی، شماره 75، ص 119-126.
  3. -کلارستاقی، ع.، حبیب نژاد، م. و احمدی، ح.، 1386. مطالعه وقوع زمین‌لغزش‌ها در ارتباط با تغییر کاربری اراضی و جاده‌سازی مطالعه موردی حوزه آبخیز تجن ساری، مجله پژوهش‌های جغرافیایی، شماره 2، ص 81-91.
  4. -منهاج، م.ب.، 1384. مبانی شبکه‌های عصبی هوش محاسباتی، جلد اول، مرکز نشر دانشگاه تفرش و دانشگاه امیرکبیر، 718 ص.
  5.  
  6.  
  7. -Ayalew, L., Yamagishi, H. and Ugawa, N., 2004. Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan: Landslides, v. 1, p. 73-81.
  8. -Beale, R. and Jackson, T., 1990. Neural Computing-an introduction, CRC Press.
  9. -Blahut, J., van Westen, C.J. and Sterlacchini, S., 2010. Analysis of landslide inventories for accurate prediction of debris-flow source areas: Geomorphology, v. 119, p. 36-51.
  10. -Carrara, A., Crosta, G. and Frattini, P., 2008. Comparing models of debris-flow susceptibility in the alpine environment: Geomorphology, v. 94, p. 353-378.
  11. -Chen, W., Pourghasemi, H.R., Panahi, M., Kornejady, A., Wang, J., Xie, X. and Cao, S., 2017. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques: Geomorphology, v. 297, p. 69-85.
  12. -Chung, C.J.F. and Fabbri, A.G., 1999. Probabilistic prediction models for landslide hazard mapping: Photogrammetric Engineering and Remote Sensing, v. 65, p. 1389-1399.
  13. -Devkota, K.C., Regmi, A.D., Pourghasemi, H.R., Yoshida, K., Pradhan, B., Ryu, I.C. and Althuwaynee, O.F., 2013. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya: Natural Hazards, v. 65, p. 135-165.
  14. -Elith, J., Phillips, S.J., Hastie, T., Dudik, M., Chee, Y.E. and Yates, C.J., 2011. A statistical explanation of MaxEnt for ecologists: Diversity and Distributions, v. 17, p. 43-57.
  15. -Goetz, J.N., Brenning, A., Petschko, H. and Leopold, P., 2015. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling: Computers & Geosciences, v. 81, p. 1-11.
  16. -Kanungo, D.P., Sarkar, S. and Sharma, S., 2011. Combining neural network with fuzzy, certainty factor and likelihood ratio concepts for spatial prediction of landslides: Natural Hazards, v. 59, p. 1491-1506.
  17. -Lee, E.M. and Jones, D.K., 2004. Landslide risk assessment, Thomas Telford, doi.org/10.1680/lra.31715.
  18. -O’brien, R.M., 2007. A caution regarding rules of thumb for variance inflation factors: Quality & Quantity, v. 41, p. 673-690.
  19. -Phillips, S.J., Anderson, R.P. and Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions: Ecological Modelling, v. 190, p. 231-259.
  20. -Pourghasemi, H.R., Pradhan, B., Gokceoglu, C., Mohammadi, M. and Moradi, H.R., 2013. Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran: Arabian Journal of Geosciences, v. 6, p. 2351-2365.
  21. -Pourghasemi, H.R. and Rossi, M., 2017. Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods: Theoretical and Applied Climatology, v. 130, p. 609-633.
  22. -Radbruch-Hall, D.H. and Varnes, D.J., 1976. Landslides—cause and effect: Bulletin of the International Association of Engineering Geology, v. 13, p. 205-216.
  23. -Rahmati, O., Kornejady, A., Samadi, M., Deo, R.C., Conoscenti, C., Lombardo, L. and Bui, D.T., 2019. PMT: New analytical framework for automated evaluation of geo-environmental modelling approaches: Science of the Total Environment, v. 664, p. 296-311.
  24. -Rahmati, O., Kornejady, A., Samadi, M., Nobre, A.D. and Melesse, A.M., 2018. Development of an automated GIS tool for reproducing the HAND terrain model: Environmental Modelling & Software, v. 102, p. 1-12.
  25. -Van Westen, C.J., Van Asch, T.W. and Soeters, R., 2006. Landslide hazard and risk zonation—why is it still so difficult?: Bulletin of Engineering Geology and the Environment, v. 65, p. 167-184.
  26. -Vapnik, V.N., 1995. The nature of statistical learning, Theory, DOI: 10.1007/978-1-4757-3264-1_1.
  27. -Xu, C., Dai, F., Xu, X. and Lee, Y.H., 2012. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China: Geomorphology, v. 145, p. 70-80.
  28. -Yalcin, A., 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations: Catena, v. 72, p. 1-12.
  29. -Yao, X., Tham, L.G. and Dai, F.C., 2008. Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China: Geomorphology, v. 101, p. 572-582.