-جعفریان، م.، 1380. نقشه زمینشناسی 1:100.000 کلاته رشم و معبد، سازمان زمینشناسی و اکتشافات معدنی کشور.
-حمامیپور، ب.، 1396. گزارش اکتشاف تفصیلی کانسار مس چاه فرسخ، سازمان صنایع و معادن استان سمنان، 160 ص.
-طاشی، م.، 1394. کانیشناسی، زمینشیمی و الگوی پیدایش کانسارهای مس-نقره گرماب پایین و اسبکشان، منطقه خارتوران، جنوب شرق شاهرود، پایاننامه کارشناسیارشد، دانشگاه صنعتی شاهرود.
-موسیوند، ف.، 1382. کانیشناسی، ژئوشیمی و ژنز کانهزایی مس در مجموعه آتشفشانی-رسوبی سوریان در منطقه بوانات، استان فارس، پایاننامه کارشناسیارشد، دانشگاه تربیت مدرس.
-مغفوری، س.، 1391. زمینشناسی، کانیشناسی، ژئوشیمی و ژنز کانهزایی مس در توالی آتشفشانی- رسوبی کرتاسه پسین در جنوب غرب سبزوار، با تاکید بر کانسار نوده، پایاننامه کارشناسیارشد، دانشگاه تربیت مدرس.
-مغفوری، س.، راستاد، ا. و موسیوند، ف.، 1393. کانسار سولفید تودهای آتشفشانزاد (VMS) نوده، نمونهای از کانسارهای نوع بشی (type- Besshi)، جنوب باختر سبزوار، فصلنامه علوم زمین، شماره 94، ص 73-86.
-هوشمندزاده، ع.، 1351. نقشه زمینشناسی 1:250.000 ترود، سازمان زمینشناسی و اکتشافت معدنی کشور.
-هوشمندزاده، ع.، علوینائینی، م. و حقیپور، ع.، 1357. تحول پدیدههای زمینشناسی ناحیه ترود (از پرکامبرین تا عهد حاضر)، سازمان زمینشناسی و معدنی کشور، نقشه شماره H5.
-Alavi, M., 1996. Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran. Journal of Geodynamics, v. 21, p. 1-33.
-Amidi, S.M., Emami, M.H. and Michel, R., 1984. Alkaline character of Eocene volcanism in the middle part of central Iran and its geodynamic situation. Geol. Rundsch. v. 73, p. 917-932.
-Badrzadeh, Z., Barrett, T.J., Peter, J.M., Gimeno, D., Sabzehei, M. and Aghazadeh, M., 2010. Geology, mineralogy and sulfur Isotope geochemistry of the Sargaz Cu-Zn volcanogenic massive sulfide deposit, Sanandaj-Sirjan zone, Iran. Mineralium Deposita, v. 46(8), p. 905-923.
-Barrie, T.C., Nielsen, F.W. and Aussant, C.H., 2007. The Bisha VolcanicAssociated Massive Sulfide Deposit, Western Nakfa Terrane, Eritrea, Economic Geology, v. 102, p. 717–738.
-Bodnar, R.J. and Vityk, M.O., 1994. Interpretations of microthermometric data for H2O-NaCl fluid inclusions, in DeVivo, B., and Frezzotti, M.L., eds., Fluid inclusions in minerals: Methods and pplications: Blacksburg, Virginia Polytechnic Institute and State University Press, p. 117-130.
-Crawford, A.R., 1977. A summary of isotopic age data for Iran, Pakistan and India. Memoire Societe Geologique de France, v. 8, p. 251-260.
-Eshraghi, S.A. and Jalali, A., 2006. Reports on the geological map of Moalleman, 1: 100,000. Geological Survey of Iran.
-Fard, M., Rastad, E. and Ghaderi, M., 2006. Epithermal gold and base metal mineralization at Gandy deposit, north of central Iran and the role of rhyolitic intrusions. Journal of Sciences University Tehran, v. 17, p. 327-335.
-Franklin, J.M., Gibson, H.L., Jonasson, I.R. and Galley, A.G., 2005. Volcanogenic Massive Sulphide Deposits, Economic Geology 100th anniversary, p. 523-560.
-Ghorbani Derakhshi, M., Hosseinzadeh, M.R., Moayyed, M. and Maghfouri, S., 2019. Metallogenesis of Precambrian SEDEX-type Barite-(Pb-Cu-Zn) deposits in the Mishu mountain, NW Iran: Constrains on the geochemistry and tectonic evolution of mineralization. Ore Geology Reviews, v. 107, p. 310-335.
-Hassanzadeh, J., Ghazi, A.M., Axen, G., Guest, B., Stockli, D. and Tucker, P., 2002. Oligocene mafic-alkaline magmatism in north and northwest of Iran: Evidence for the separation of the Alborz from the Urumieh-Dokhtar magmatic. Geological Society of America, v. 34(6), p. 331-348.
-Hitzman, M., Kirkham, R., Broughton, D., Thorson, J. and Selly, D., 2005. The sediment hosted stratiform copper ore system. In: Thompson, J.F.H., Goldfarb, R.J, Richards, J.P. (Eds.), 100th Anniversary volume. Society of Economic Geologists, p. 609-642.
-Kirkham, R.V., 1996. Volcanic red bed copper. Geol. Sur. of Canada, Canadian Mineral Deposit Types, v. 8, p. 241-252.
-Kojima, S., Trista, D., Guilera, A. and Ken-ichiro ayashi, H., 2009. Genetic aspects of the manto type copper deposits based on geochemical studies of north Chilean deposits. Resour. Geol., v. 59(1), p. 87-98.
-Large, R.R., McGoldrick, P., Bull, S. and Cooke, D., 2004. Proterozoic startiform sediment-hosted zinc-lead-silver deposits of northern Australia, in Deb, M. and Goodfellow, W.D., eds., Sediment-hosted lead-zinc sulphide deposits: Attributes and models of some major deposits of India, Australia and Canada: Narosa publishing house, Delhi, India, p. 1-24.
-Maghfouri, S., Rastad, A., Mousivand, F. and
Ye, L., 2016. Geology, ore facies and sulphur isotopes geochemistry of the Nudeh Besshi type volcanogenic massive sulphide deposit, Southwest Sabzevar basin, Iran. Journal of Asian Earth Sciences, v. 125, p. 145-161.
-Maghfouri, S., Hosseinzadeh, M.R., Rajabi, A. and Azimzadeh, A.M., 2017. Darreh-Zanjir deposit; a typical carbonate hosted Zn-Pb deposit (MVT) in early cretaceous sedimentary sequence, southern Yazd basin. Scientific Quarterly Journal of Geosciences v. 26(103), p. 13-28.
-Maghfouri, S., Rastad, A., Lentz, D.R., Mousivand, F. and Choulet.F., 2018. Mineralogy, microchemistry and fluid inclusion studies of the Besshi-type Nudeh Cu-Zn VMS deposit, Iran. Chemie der Erde, v. 78, p. 40-57.
-Maghfouri, S., Hosseinzadeh, M.R. and Choulet, F., 2020. Supergene nonsulfide Zn–Pb mineralization in the Mehdiabad world-class sub-seafloor replacement SEDEX-type deposit, Iran. International Journal of Earth Sciences, v. 109, p. 2531-2555.
-Maghfouri, S., Rastad, A., Mousivand, F. and Lentz, D.R., 2021a. Chemical composition of magnetite and chlorite from the stringer zone of the Nudeh VMS deposit, Iran: geological implications. Mineralogy and Petrology, v. 115(2).
-Maghfouri, S., Hosseinzadeh, M.R., Lentz, D.R., Tajeddin, H.A., Movahednia, M. and Shariefi, A., 2021b. Nature of ore-forming fluids in the Mehdiabad world-class sub-seafloor replacement SEDEX-type Zn-Pb-Ba-(Cu-Ag) deposit, Iran; constraints from geochemistry, fluid inclusions, and O-C-Sr isotopes. Journal of Asian Earth Sciences, v. 207, p. 104-122.
-Mehrabi, B. and Ghasemi Siani, M., 2012. Intermediate sulfidation epithermal Pb-Zn-Cu (±Ag-Au) mineralization at Cheshmeh Hafez deposit, Semnan province. Iran Journal. Geological Society of India, v. 80, p. 563-578.
-Mousivand, F., Rastad, E. and Emami, M.H., 2004. Bavanat copper deposit; a Besshi-type volcanogenic massive sulfide deposit in Iran. 22nd Annual Symposium of Geosciences, Geological Survey of Iran.
-Mousivand, F., Rastad, E., Meffre, S.M., Peter, J.M., Solomon, M. and Zaw, K., 2011. U-Pb geochronology and Pb isotope characteristics of the Chahgaz volcanogenic massive sulfide deposit, South of Iran. International Geology Review, v. 53(10), p. 1239-1262.
-Mousivand, F., Rastad, E., Emami, M.H., Peter, J.M. and Solomon, M., 2012. Bathurst-type Zn-Pb-Cu Volcanogenic Massive Sulfide Mineralization in the Chahgaz Area, South of Shahre Babak, South Sanandaj-Sirjan Zone, Geological Survey of Iran, v. 82, p. 151-162.
-Mousivand, F., Rastad, E., Hoshino, K. and Watanabe, M., 2007. The Bavanat Cu- Zn- Ag orebody: frist recognition of a Besshi- type VMS deposit in Iran, Neues Jahrbuch für Mineralogie Abhandlungen, v. 183(3), p. 296-315.
-Monecke, T., Gemmeli, J. and Herzig, P., 2006. Geology and Volcanic Facies Architecture of the Lower Ordovician Waterloo Massive Sufide Deposit, Australia, Economic Geology, v. 101, p. 179-197.
-Niroomand, S., Hassanzadeh, J., Tajeddin, H.A. and Asadi, S., 2018. Hydrothermal evolution and isotope studies of the Baghu intrusion-related gold deposit, Semnan province, north-central Iran. Ore Geology Reviews, v. 95, p. 1028-1048.
-Shafaii Moghadam, H., Khademi, M., Hu, Z., Stern, R.J., Santos, J.F. and Wu, Y., 2015. Cadomian (Ediacaran–Cambrian) arc magmatism in the ChahJam– Biarjmand metamorphic complex (Iran): Magmatism along the northern active margin of Gondwana. Gondwana Research, v. 27, p. 439-452.
-Shamanian, G.H., Hedenquist, J.W., Hattori, K.H. and Hassanzadeh, J., 2004. The Gandy and Abolhassani epithermal prospects in the Alborz magmatic arc, Semnan province, northern Iran. Econ. Geol., v. 99, p. 691-712.
-Solomon, M., 2008. Brine pool deposition for the Zn-Pb-Cu massive sulphide deposits of the Bathurst mining camp, New Brunswick, Canada. I. Comparisons with the Iberian pyrite belt. Ore Geology Reviews, v. 33(3–4), p. 329-351.
-Pirajno, F., 2009. Hydrothermal Processes and Mineral Systems. Springer, Berlin, Germany, 250 p.
-TaleFazel, E., Mehrabi, B. and GhasemiSiani, M., 2019. Epithermal systems of the Torud–Chah Shirin district, northern Iran: Ore fluid evolution and geodynamic setting. Ore Geology Reviews, v. 109, p. 253-275.
-Rastad, E., Monazami miralipour, A. and Momenzadeh, M., 2012. Sheikh-Ali copper deposit, A Cyprus-type VMS deposit in southeast Iran. Journal of Sciences, Islamic Republic of Iran, v. 13(1), p. 51-63.
-Wilkinson, J., 2001. “Fluid inclusions in hydrothermal ore deposits”. Lithos, v. 55(1), p. 229-272.
-Yarmohammadi, A., Rastad, E., Mousivand, F. and Watanabe, M., 2008. Barika Au-Ag-(ZnPb-Cu) deposit: First recognition of gold-rich Kuroko-type VMS mineralization in Iran. 33rd International Geological Congress, Geological Survey of Norway, Oslo, Norway.
-Zheng, Y., Zhang, L., Chen, Y., Hollings, P. and Chen, H., 2013. Metamorphosed Pb-Zn– (Ag) ores of the Keketale VMS deposit, NW China: Evidence from ore textures, fluid inclusions, geochronology and pyrite compositions. Ore Geology Reviews, v 54, p. 167-180.