-اسدی هارونی، ه.، طباطبایی، س.ح. و رضائی، ر.، 1389. شناسایی و تفکیک زونهای آلتراسیون در محدوده ساریگونای با استفاده از دادههای ماهوارهای TM، چهاردهمین همایش زمینشناسی ایران و بیست و هشتمین گردهمائی علوم زمین، دانشگاه ارومیه.
-رادفر، ج. و علایی مهابادی، س.، 1372. نقشه زمینشناسی 1:100000 کاشان، سازمان زمینشناسی کشور.
-ضیاءظریفی، ا.، 1389. مبانی اکتشافات رادیومتریک ژئوفیزیکی، انتشارات دانشگاه آزاد اسلامی واحد لاهیجان، 312 ص.
-Abera, B.G., 2005. Application of remote sensing and spatial data integration modeling to predictive mapping of apatite-mineralized zones in the Bikalal layered gabbro complex, Western Ethiopia. Master of Science Thesis in Geo-information Science and Earth Observation, Specialisation: Mineral Resource Exploration, Enschede the Netherlands.
-
Aliani, F.,
Dadfar, S. and
Maanijou, M., 2013. Detection of alteration zones of Haji Abad iron deposit with (SWIR+VNIR) data of ASTER sensor, Geosciences, v. 24(94), p. 73-80.
-Alilou, S.K., Norouzi, G.H., Doulati, F. and Abedi, M., 2014. Application of magnetometery, electrical resistivity and induced polarization for exploration of polymetal deposits, a case study: Halab Dandi, Zanjan, Iran. 2nd International Conference on Advnces in Engineering Sciences and Applied MathematicsAt: Istanbul, Turkey.
-Armson, D., Stringer, P. and Ennos, A.R., 2012. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban Forestry & Urban Greening, v. 11, p. 245-255.
-Avdan, U. and Jovanovska, G., 2016. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. Journal of Sensors, v. 2016, 8 p.
-Azizi, H., Tarverdi, M.A. and Akbarpour, A., 2010. Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran. Advances in Space Research, v. 46(1), p. 99-109.
-Baranov, V., 1957. A new method for interpretation of aeromagnetic maps: pseudo-gravimetric anomalies. Geophysics, v. 22(2), p. 359-383.
-Baranov, V. and Naudy, H., 1964. Numerical calculation of the formula of reduction to the magnetic pole. Geophysics, v. 29, p. 67-79.
-Behnam, S. and Ramazi, H., 2019. Interpretation of geomagnetic data using power spectrum and 3D modeling of Gol-e-Gohar magnetic anomaly. Journal of Applied Geophysics, v. 171, p. 103-129.
-Boloki, N. and Poormirzaee, R., 2009. Using ASTER image processing for hydrothermal alteration and key alteration minerals mapping in Siyahrud, Iran. International Journal of Geology, v. 2(3), p. 38-43.
-Cooper, G.R.J. and Cowan, D.R., 2006. Enhancing potential field data using filters based on the local phase. Computers & Geosciences, v. 32(10), p. 1585-1591.
-Crosta, A.P. and Moore, J.M.C.M., 1989. Enhancement of landsat thematic mapper imagery for residual soil mapping in SW Minas Gerais State Brazil: a prospecting case history in greenstone belt terrain. Proceedings of the 9th Thematic Conference on Remote Sensing for Exploration Geology, Calgary (Ann Arbor, MI: Environmental Research Institute of Michigan), p. 1173-1187.
-Crosta, A.P., De Souza Filho, C.R., Azevedo, F. and Brodie, C., 2003. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, v. 24(21), p. 4233-4240.
-Di Tommaso, I. and Rubinstein, N., 2007. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geology Reviews, v. 32(1-2), p. 275-290.
-Gupta, H.K. and Roy, S., 2006. Geothermal energy: an alternative resource for the 21st century. ElsevierScience, 292 p.
-Hewson, R.D., Cudahy, T.J., Mizuhiko, S., Ueda, K. and Mauger, A.J., 2005. Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sensing of Environment, v. 99(1-2), p. 159-172.
-Jin, M. and Dickinson, R.E., 2010. Land surface skin temperature climatology: benefitting from the strengths of satellite observations. Environmental Research Letters, v. 5(4), doi:10.1088/1748-9326/5/4/044004.
-Khaleghi, M. and Ranjbar, H., 2011. Alteration mapping for exploration of porphyry copper mineralization in the Sarduiyeh Area, Kerman Province, Iran, using ASTER SWIR Data. Australian Journal of Basic and Applied Sciences, v. 5(8), p. 61-69.
-Kustas, W.P., Li, F., Jackson, T.J., Prueger, J.H., MacPherson, J.I. and Wolde, M., 2004. Effects of remote sensing pixel resolution on modeled energy flux variability of croplands in Iowa. Remote Sensing of Environment, v. 92, p. 535-547.
-Lelievre, P.G. and Oldenburg, D.W., 2006. Magnetic forward modelling and inversion for high susceptibility. Geophysical Journal International, v. 166(1), p. 76-90.
-Li, Y. and Oldenburg, D.W., 1996. 3-D inversion of magnetic data. Geophysics, v. 61(2), p. 394-408.
-Liu, S., Hu, X. and Zhu, R., 2018. Joint inversion of surface and borehole magnetic data to prospect concealed orebodies: A case study from the Mengku iron deposit, northwestern China. Journal of Applied Geophysics, v. 154, p. 150-158.
-Maanijou, M., Puyandeh, N., Sepahi, A.A. and Dadfar, S., 2015. Mapping of hydrothermal alteration of Dashkasan (Sari Gunay) epithermal gold mine using ASTER sensor images and XRD analysis. Journal of Geoscience, v. 24(95), p. 95-104.
-Mohammadzadeh Moghaddam, M., Mirzaei, S., Nouraliee, J. and Porkhial, S., 2016. Integrated magnetic and gravity surveys for geothermal exploration in Central Iran. Arabian Journal of Geosciences, v. 9(7), p. 1-12.
-Phillips, N.D., 2002. Geophysical inversion in an integrated exploration program: Examples from the San Nicolas deposit, Doctoral dissertation, University of British Columbia.
-Prost, G.L., 2002. Remote sensing for geologists: a guide to image interpretation. CRC Press, 326 p.
-Rosid, M.S., Sari, N.I. and Jaman, A.P., 2020. Identification of gold mineralization zone in “GB” field, Jambi, Indonesia using 3D inversion magnetic dataIOP Conference Series: Earth and Environmental Science, v. 481(1), p. 012052.
-Rouse, J.W., Haas, R.H., Shell, J.A. and Deering, D.W., 1974. Monitoring vegetation systems in the Great Plains with ERTS. In: Freden, S.C., Mercanti, E.P., Becker, M.A. (Eds.), Third Earth Resources Technology Satellite-1 Symposium. Goddard Space Flight Center, Washington, D.C.: Scientific and Technical Lnformation Ofice, NASA. p. 309-317.
-Rowan, L.C. and Mars, J.C., 2003. Lithologic mapping in the Mountain Pass, California area using advanced space-borne thermal emission and reflection radiometer (ASTER) data. Remote sensing of Environment, v. 84(3), p. 350-366.
-Sabins, F.F., 1999. Remote sensing for mineral exploration. Ore Geology Reviews, v. 14(3-4), p. 157-183.
-Sobrino, J.A. and Raissouni, N., 2000. Toward remote sensing methods for land cover dynamic monitoring: application to Morocco. International Journal of Remote Sensing, v. 21, p. 353-366.
-Sobrino, J.A., Jiménez-Muñoz, J.C. and Paolini, L., 2004. Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of environment, v. 90(4), p. 434-440.
-Soe, M., Kyaw, T.A. and Takashima, I., 2005. Application of remote sensing techniques on iron oxide detection from ASTER and Landsat images of Tanintharyi coastal area, Myanmar, Scientific and Technical Reports of Faculty of Engineering and Resource Science, Akita University, v. 26, p. 21-28.
-Taghavi, A., Maanijou, M., Lentz, D. and Sepahi, A.A., 2019. Partial sub-pixel and pixel-based alteration mapping of porphyry system using ASTER data: regional case study in western Yazd, Iran. International Journal of Image and Data Fusion, v. 10(4), p. 300-326.
-Voogt, J.A. and Oke, T.R., 2003. Thermal remote sensing of urban climates. Remote Sensing of Environment, v. 86, p. 370-384.
-Wang, F., Qin, Z., Song, C., Tu, L., Karnieli, A. and Zhao, S., 2015. An improved monowindow algorithm for land surface temperature retrieval from landsat 8 thermal infrared sensor data. Remote Sensing, v. 7, p. 42-68.
-Weng, Q., Lu, D. and Schubring, J., 2004. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, v. 89, p. 483-467.
-Williams, N.C., 2008. Geologically-constrained UBC–GIF gravity and magnetic inversions with examples from the Agnew-Wiluna greenstone belt, Western Australia, Doctoral dissertation, University of British Columbia.
-Yuhas, R.H., Goetz, A.F. and Boardman, J.W., 1992. Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm, JPL, Summaries of the Third Annual JPL Airborne Geoscience Workshop, v. 1, AVIRIS Workshop.