چینه‌نگاری زیستی سازند گورپی با تاکید بر نانوفسیل‌های آهکی در برش قطب آباد، شمال شرق جهرم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه معدن، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران

2 گروه زمین‌شناسی، دانشگاه پیام نور، تهران، ایران

چکیده

در مطالعه حاضر 458 متر از رسوبات سازند گورپی در برش قطب­آباد واقع در شمال شرق جهرم از نقطه نظر نانوفسیل­های آهکی مورد بررسی قرارگرفت. در این برش سازند گورپی از سنگ آهک رسی خاکستری تشکیل شده است. بررسی نانوفسیل­های آهکی در این قسمت منجر به تشخیص 22 جنس و 37 گونه شد. براساس پراکندگی گونه­های شاخص نانوفسیلی، زیست­زون­هایAspidolithus parcus zone(CC18/Early Campanian), Calculites ovalis zone(CC19/Late Early Campanian), Ceratolithoides aculeus zone (CC20/Late Early Campanian), Quadrum sissinghii zone (CC21/ Early Late Campanian), Quadrum trifidum zone (CC22/Late Late Campanian), Tranolithus phacelosus zone (CC23/Latest Campanian–Early Maastrichtian), Reinhardtites levis zone (CC24/Early Maastrichtian) and Arkhangelskiella cymbiformis zone (CC25/ Late Maastrichtian) از زون­بندی سیسینگ (Sissingh, 1977) تشخیص داده شد. این زون­ها با زیست­زون­های UC14aTP تا UC20bTP از زون­بندی بارنت (Burnett, 1998) مطابقت دارد. براساس زیست­زون­های به دست آمده، بازه زمانی سازند گورپی در این برش از کامپانین پیشین تا ماسترشتین پسین است. مطالعه در برش قطب­آباد نشان می­دهد که نهشته­های سازندگورپی با کاهش عمق حوضه رسوبی در اواخر ماسترشتین، به صورت همشیب و ناگهانی به رسوبات آهکی سازند تاربور می­رسند.

کلیدواژه‌ها


عنوان مقاله [English]

Biostratigraphy of the Gurpi formation with emphasis on Calcareous nannofossil in the Qutbabad section, Northeast Jahrum

نویسندگان [English]

  • saeedeh senemari 1
  • Mahnaz Parvaneh Nejad Shirazi 2
1 Department of Mining, Imam Khomeini International University, Qazvin, Iran
2 Department of Geology, Payame Noor University, Tehran, Iran
چکیده [English]

Extended abstract
Introduction     
One of the most extensive Cretaceous deposits is the Gurpi Formation in the Zagros Basin, which was studied based on calcareous nannofossilstudies. Type section of the Gurpi Formation is located in the southwestern Tang-e Pabdeh, North of Lali oilfield (Jams & Wynd, 1965). One of the most important achievements obtained in the Gurpi Formation is the evaluationof biozones. In the present study, calcareous nannofossils have been investigated in the Qutbabadsection located in Northeastof Jahrum. The thickness of the studied section is about 458 m. The study in the Qutbabad section show that sediments of Gurpi Formation have a drop in the depth of sedimentary basin at the late Maastrichtian and suddenly lead to limestones of Tarbur Formation.
Material & Methods
In this study 78 samples from the Gurpi Formation have been studied. Samples were prepared following standard smear slide method (Bown and Young 1998). All slides were studied under polarized light microscope at × 1000 magnification. The nomenclature of calcareous nannofossils follow the taxonomic schemes of Perch-Nielsen (1985).
Results & Discussion
In order to study biostratigraphy based on calcareous nannofossils, the Gurpi Formation in the Qutbabad section was selected. In this section, Gurpi Formation mainly consists of gray argillaceous limestones. For introducing calcareous nannofossil assemblages, slides have been studied, which led to the recognition of 22 genera and 37 species of calcareous nannofossils. According to the first and last occurrence of index species and recording bio-events, eight zones including Aspidolithus parcus ZonetoArkhangelsiella cymbiformis Zonehave been recognized. According to the first and last occurrence of index species the following bio-zones are identified:
Aspidolithus parcus parcus Zone
The first zone in the Gurpi Formation is recorded from the FO of A. parcus parcusto LO of M.  furcatus. The age of this zone is early Campanian. The thickness of this zone is 53 m.
 Calculites ovalis Zone          
This zone spans the interval from the last occurrence of M. furcatusto the FO of C. aculeus. The age of this zone is late Early Campanian. The thickness of this zone is 40 m.
Ceratolithoides aculeus Zone
This zone spans the interval from the FO ofC.aculeusto the FO ofU. sissinghii. The age of this zone is late Early Campanian. The thickness of this zone was measured about 54 m.
Quadrum sissinghiiZone                                                                                     
This zone spans the interval from the FO of U.  sissinghiito the FO ofU.  trifidum. The age of this zone is early Late Campanian. The thickness of this zone was measured about 78 m.
Quadrum trifidum Zone
This zone spans the interval from the FO of U.trifidumto the LO ofR. anthophorus. The age of this zone is late Campanian. The thickness of this zone was measured about 20 m.
Tranolithus phacelosusZone
This zone spans the interval from the LO of R. anthophorusto the LO ofT.  phacelosus. The age of this zone is latest Campanian–early Maastrichtian. The thickness of this zone was measured about 50 m.
Reinhardtites levis Zone
This zone spans the interval from the LO of Tranolithus phacelosusto the LO ofReinhardtites levis. The age of this zone is early Maastrichtian. The thickness of this zone was measured about 133 m.
Arkhangelsiella cymbiformisZone
The last bio zone recorded is Arkhangelsiella cymbiformis Zone. This zone spans the interval from the LO of Reinhardtites levisto the FO ofNephrolithus frequens. The age of this zone is late Maastrichtian. The thickness of this zone was measured about 27 m.
Conclusion
As a result of this study, 22 genera and 37 species of calcareous nannofossil have been recognized. Based on distribution of index species calcareous nannofossils biozones of the zonation of Sissingh (1977) have been recognized, including CC18, CC19, CC20, CC21, CC22, CC23, CC24 and CC25, that correspond to UC14aTP till UC20bTP zones of Burnett (1998). According to the identified biozones, the age of the Gurpi Formation in this section is early Campanian to late Maastrichtian.

کلیدواژه‌ها [English]

  • Jahrum
  • Biostratigraphy
  • Biozones
  • Gurpi
  • Calcareous nannofossils
-آقانباتی، ع.، 1385. زمین­شناسی ایران، انتشارات سازمان زمین­شناسی و اکتشافات معدنی کشور، 586  ص.
-حسینی فالحی، ب.، 1385. لیتواسترتیگرافی و نانواستراتیگرافی سازندگورپی درتاقدیس کوه منگشت و برش تاقدیس کمستان (منطقه ایذه)، پایان­نامه کارشناسی­ارشد دانشگاه شهید بهشتی، 194 ص.
-درویش زاده، ع.، 1370. زمین­شناسی ایران، انتشارات نشر دانش امروز، 901 ص. 
-سنماری، س.، فضلی، ل. و عمرانی، م.، 1389. بررسی تطابق نانوپلانکتون­های آهکی و روزنبران پلانکتون سازندگورپی درخاور بهبهان، فصلنامه علوم زمین، شماره 75، ص 119-126.
-فریدونپور، م.، وزیری مقدم، ح.، غبیشاوی، ع. و طاهری، ع.، 1393. چینه­نگاری سازندگورپی در برش تاقدیس کوه سیاه و مقایسه آن با برش­های تنگ بوالفارس و تاقدیس آغار، رخساره­های رسوبی، شماره 7(1)، ص 106-83.
-هادوی، ف. و شکری، ن.، 1388. نانواستراتیگرافی سازندگورپی در جنوب ایلام (برش کاور)، مجله رخساره­های رسوبی، شماره 2(2)، ص 217-225.
 
 
 
-Alavi, M., 2007. Structures of the Zagros Fold -Thrust belt in Iran:American Journal of Sciences, v. 307, p. 1064-1095.
-Bahrami, M. and Parvanehnezhad Shirazi, M., 2010. Microfacies and sedimentary environments of Gurpi and Pabdeh Formations and the type of Mesozoic– Cenozoic boundary in Fars province, Iran: Journal of Applied Geology, v. 5(4), p. 330-335.
-Beiranvand, B. and Ghasemi-Nejad, E., 2013. High resolution planktonic foraminiferal biostratigraphy of the Gurpi Formation, K/Pg boundary of the Izeh Zone, SW Iran: Revista Brasileira de Paleontologia, v. 16(1), p. 5-26.
-Bornemann, A., Aschwer, U. and Mutterlose, J., 2003. The impact of calcareous nannofossils on the pelagic carbonate accumulation across the Jurassic-Cretaceous boundary: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 199, p. 187-228.
-Bown, P.R. and Young, J.R., 1998. Techniques; In: Bown, P.R. (eds.), Calcareous Nannofossil Biostratigraphy. Chapman and Hall, London, p. 16-28.
-Burnett, J.A., 1998. Upper Cretaceous. In: Bown, P.R. (eds.), Calcareous Nannofossil Biostratigraphy, British Micropalaeontological Society Publication Series. Chapman and Hall Ltd. Kluwer Academic Publisher, London, p. 132-165.
-Bralower, T.J., 1988. Calcareous nannofossil biostratigraphy and assemblages of the Cenomanian-Turonian boundary interval: implicationsfor the origin and timing of oceanic anoxia: Paleoceanography v. 3, p. 275-316.
-Bralower, T.J., Leckie, R.M., Sliter, W.V. and Thierstein, H.R., 1995. An integrated Cretaceous microfossil biostratigraphy. In: Berggren, W.A., Kent, D.V., Aubry, M.P. & Hardenbol, J. (eds.), Geochronology, time scales and global stratigraphic correlation. SEPM special publication, p. 65-79.
-Bralower, T.J., 2002. Evidence of surface water oligotrophy during the Paleocene-Eocene thermal maximum: Nannofossil assemblage data from Ocean Drilling Program Site 690, Maud Rise, Weddell Sea: Paleoceanography, v. 17(2), p. 1-13.
-Bralower, T.J., 2005. Data report: Paleocene–Early Oligocene calcareous nannofossil biostratigraphy, ODP Leg 198 Sites 1209, 1210, and 1211 (Shatsky Rise, Pasific Ocean). In: Bralower, T.J., Premoli Silva, I., Malone, M.J. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, v. 198, p. 1-15.
-Campbell, R.J., Howe, R.W. and Rexilius, J.P., 2004. Middle Campanian–lowermost Maastrichtian nannofossil and foraminiferal biostratigraphy of the northwestern Australian margin: Cretaceous Research, v. 25, p. 827-864.
-Erba, E., 2004. Calcareous nannofossils and Mesozoic oceanic anoxic events: Marine Micropaleontology, v. 52, p. 85-106.
-Friedrich, O. and Meier, S., 2006. Suitability of stable oxygen and carbon isotopes of calcareous dinoflagellate cysts for paleoclimatic studies: Evidence from the Campanian- Maastrichtian cooling phase: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 239, p. 456-469.
-Gradstein, F.M., Ogg, J.G., Schmitz, M.D. and Ogg, G.M., 2012. The Geological Time Scale 2012, Amsterdam, Elsevier, 2 vols., 1144 p.
-Hardas, P., Mutterlose, J., Friedrich, O. and Erbacher, J., 2008. A major biotic event in the middle Cenomanian equatorial Atlantic. In: Hardas, P. 2008, The response of calcareous nannofossils to Oceanic Anoxic Event 2 and the Middle Cenomanian Event in the tropicalAtlantic: Biostratigraphy and palaeoceanographic implications, p. 84-129.
-Herrle, J.O., 2003. Reconstructing nutricline dynamics of mid-Cretaceous oceans evidence from calcareous nannofossils from the Niveau Paquier black shale (SE France): Marine Micropaleontology, v. 47, p. 307-321.
-Heidari, E., Hassanzadeh, J., Wade, W.J. and Ghazi, A.M., 2003. PermianeTriassic boundary interval in the Abadeh section of Iran with implications for mass extinction: Part 1e Sedimentology: Paleogeography, Paleoclimatology, Paleoecology, v. 193, p. 405-423.
-Huber, B.T., Norris, R.D. and MacLeod, K.G., 2002. Deep-sea paleotemperature record of extreme warmth during the Cretaceous: Geology, v. 30, p. 123-126.
-James, G.A. and Wynd, J.G., 1965. Stratigraphic Nomenclature of Iranian Oil Consortium Agreement Area: AAPG Bulletin, v. 49, p. 2182-2245.
-Kessels, K., Mutterlose, J. and Ruffel, A., 2003. Calcareous nannofossils from late Jurassic sediments of the Volga Basin (Russian Platform): evidence for productivity-controlled black shale deposition: International Journal of Earth Sciences, v. 92, p. 743-757.
-Linnert, C. and Mutterlose, J., 2009. Evidence of increasing surface water oligotrophy during the Campanian- Maastrichtianboundary interval: Calcareous nannofossils from DSDP Hole 390A (Black Nose): Marine Micropaleontology, v. 73, p. 26-36.
-Linnert, C., Mutterlose, J. and Erbacher, J., 2010. Calcareous nannofossils of the Cenomanian/Turonian boundary interval from the BorealRealm (Wunstorf, northwest Germany): Marine Micropaleontology, v. 74, p. 38-58.
-Linnert, C., Mutterlose, J. and Herrle, J.O., 2011. Late Cretaceous (Cenomanian–Maastrichtian) calcareous nannofossils from Goban Spur (DSDP Sites 549, 551): Implications for the palaeoceanography of the proto North Atlantic: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 299, p. 507-528.
-Lees, J.A., 2002. Calcareous nannofossil biogeography illustrates palaeoclimate change in the Late Cretaceous Indian Ocean: Cretaceous Research, v. 23, p. 537-634.
-Mahanipour, A. and Najafpour, A., 2016. Calcareous nannofossil assemblages of the Late Campanian- Early Maastrichtian form Gurpi Formation (Dezful embayment, SW Iran): Evidence of a climate cooling event: JGeope, v. 6 (1), p. 129-148.
-Motiei, H., 2003. Stratigraphy of Zagros, Treatise on the geology of Iran. Tehran, Iran, Geology Survey Press, 583 p.
-Mutterlose, J., 1989. Temperature-controlled migration of calcareous nannofloras in the north-west European Aptian. In: Crux, J.A., van Heck, S.E. (eds.), Nannofossils and their Applications. Proceedings of the International Nannofossil Association Conference, London. Ellis Horwood, Chichester, p. 122-142.
-Mutterlose, J., Bornemann, A. and Herrle, J.O., 2005. Mesozoic calcareous nannofossils – state of the art: Paläontologische Zeitschrift, v. 79(1), p. 113-133.
-Perch-Nielsen, K., 1985. Mesozoic calcareous nannofossils. In: Bolli, H.M., et al. (eds.), Plankton Stratigraphy. Cambridge University Press, p. 329-426.
-Roth, P.H., 1978. Cretaceous nannoplankton biostratigraphy and oceanography of the northwestern Atlantic Ocean Initial: Reports of the Deep Sea Drilling Project, v. 44, p. 731-760.
-Roth, P.H. and Krumbach, K.R., 1986. Middle Cretaceous calcareous nannofossil biogeography and preservation in the Atlantic and Indian oceans: implications for paleoceanography: Marine Micropaleontology, v. 10, p. 235-266.
-Sissingh, W., 1977. Biostratigraphy of cretaceous calcareous nannoplankton: Geologie En Minjbouw, v. 56, p. 37-65.
-Shamrock, J.L. and Watkins, D.K., 2009. Evolution of the Cretaceous calcareous nannofossil genus Eiffellithus and its biostratigraphic significance: Cretaceous Research Journal, v. 30, p. 1083-1102.
-Tantawy, A.A.A.M., 2002. Calcareous nannofossil biostratigraphy and palaeoecology of the Cretaceous- Tertiary transition in the central eastern desert of Egypt: Marine Micropaleontology, v. 47, p. 323-356.
-Thibault, N. and Gardin, S., 2007. The late Maastrichtian nannofossil record of climate change in the South Atlantic DSDP Hole 525A: Marine Micropaleontology, v. 65, p. 163-184.
-Thibault, N. and Gardin, S., 2010. The calcareous nannofossil response to the end-Cretaceous warm event in the Tropical Pacific: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 291, p. 239-252.
-Thierstein, H.R., 1976. Mesozoic calcareous nannoplankton Biostratigraphy of Marine Sediments: MarineMicropaleontology, v. 1, p. 325-362.
-Thierstein, H.R., 1981. Late Cretaceous nannoplankton and the change at the Cretaceous–Tertiary boundary. In: Warme, J.E., Douglas, R.G., Winterer, E.L. (eds.), The Deep Sea Drilling Project: a decade of progress. SEPM Special Publication, p. 355-394.
-Tremolada, F., Erba, E. and Bralower, T.J., 2006. Late Barremian to early Aptian calcareous nannofossil paleoceanography and paleoecologyfrom the Ocean Drilling Program Hole 641C (Galicia Margin): Cretaceous Research, v. 27, p. 887-897.
-Vaziri-Moghaddam, H., 2002. Biostratigraphic study of the Ilam and Gurpi Formations based on planktonicforaminifera in SE of Shiraz (Iran): Journal of Sciences, Islamic Republic of Iran, v. 13, p. 339-356.
-Villa, G., Fioroni, C., Pea, L., Bohaty, S. and Persico, D., 2008. Middle Eocene-late Oligocene climate variability: Calcareous nannofossil response at Kerguelen Plateau, Site 748: Marine Micropaleontology, v. 69, p. 173-192.
-Watkins, D.K., 1992. Upper Cretaceous nannofossils from Leg 120, Kerguelen plateau, southern ocean: Proceedings of the Ocean Drilling program, scientific results, v. 120, p. 343-370.
-Watkins, D.K., Wise Jr, S.W., Pospichal, J.J. and Crux, J., 1996. Upper Cretaceous calcareous nannofossil biostratigraphy and paleoceanography of the Southern Ocean. In: Moguilevsky, A., Whatley, R. (eds.), Microfossils and oceanic environments. University of Wales, Aberystwyth Press, p. 55-381.
-Williams, J.R., and Bralower, T.J., 1995. Nannofossil assemblages, fine fraction stable isotopes, and the paleoceanography of the Valanginiane-Barremian (Early Cretaceous) North Sea Basin: Paleoceanography, v. 10, p. 815-864.