پتروگرافی و ژئوشیمی سرپانتینیت‌های افیولیت گیسیان سیلوانا – جنوب ارومیه؛ ارتباط با فرورانش نئوتتیس در مرز شمال‌غربی ایران

نوع مقاله : مقاله پژوهشی

نویسنده

گروه زمین‌شناسی، دانشکده علوم، دانشگاه ارومیه، ارومیه، ایران

چکیده

یکی از اجزاء افیولیت گیسیان سیلوانا در جنوب ارومیه (نزدیکی مرز ایران با ترکیه و عراق) و در ادامه سوچر نئوتتیس در شمال­غرب ایران، سرپانتینیت­ها هستند که با دارا بودن فازهای لیزاردیت/کریزوتیل و مگنتیت به­عنوان کانی اصلی و اسپینل کرومیتی، الیوین و پیروکسن­ها به صورت فرعی و با ظاهر سبز و لمس صابونی شناخته می­شوند. ریزساختارهای متنوعی از قبیل شبکه­ای، غربالی، رشته­ای، چشمی و ساعت­شنی در آنها شناسایی شد. براساس ژئوشیمی سنگ کل و با استفاده از نمودارها و نسبت­های بین اکسید عناصر اصلی و جزئی، تعلق این سنگ­ها به نوع سرپانتینیت­های فرورانده شده معلوم شد. همچنین باروری مجدد این سنگ­ها به­واسطه تبادل سنگ/سیال در کانال فرورانشی با غنی­شدگی شدید از عناصر متحرک در سیال (FME) نظیر Pb، U، As، Ba، Li، Sr اثبات شد. با توجه به عدم مشاهده آنتی­گوریت در این سنگ­ها ممکن است عمق فروراندگی تختال نئوتتیس در این بخش از ایران به دلیل پرشیب بودن صفحه فرورانشی، کمتر از 50 کیلومتر بوده باشد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Serpentinites of Gysian Silvana Ophiolites-South of Urmia petrography and geochemistry; relationship with Neo-Tethys subduction at the Northwest border of Iran

نویسنده [English]

  • monir modjarrad
Department of Geology, Faculty of Sciences, Urmia University, Urmia, Iran
چکیده [English]

Introduction
Some researchers supposed that investigating the formation of serpentineites can have important applications for understanding the large-scale geodynamics of that earth (Hattori and Guillot, 2003; Hilairet et al, 2007). Serpentineization occurs in a wide range of temperatures and pressures, low temperature serpentinite of alpine type ultramafic rocks occurs due to the penetration of atmospheric waters or from the infiltration of saline waters derived from sediments. This often refers to retrograde serpentineization. In contrast, progressive serpentineization occurs in many metamorphic processes during burial and warming of ultramafic rocks, which includes minimum water, during this process from the reaction of chrysotyl, antigorite and brucite, or antigorite reaction with brucite, forsterite + water were formed (Klein et al, 2014; Evans et al, 2013). The formation of anteatgorite may also occur from the reaction of chrysotyl/lyzardite with talc (Murzin et al, 2013; Lacinska et al, 2016).
Materials and methods
After sampling and evaluation of microscopic sections, samples performed by X-ray micro-analyzer by Cansaran Binalood Company. With the aim of studying the whole rock geochemistry, 11 representative samples sent to the Zarazma Company of Tehran and ICP-MS analysis made for rare earth elements and transitional elements and XRF to obtain the major oxide elements.
Results and discussion
The remaining olivines were ferro-hortonolite, spinels were chromite, clinopyroxenes were hedenbergite and orthopyroxenes left by serpentineization were ferrosilite. The geochemistry of these rocks is similar to the mantle wedge serpentinites studied along the Neo-Tethys. For example, with Voltri Massive serpentineites in the Italian Alps (Cannao, 2016) or with average subducted serpentinites (Deschamps et al, 2013). The serpentineization of these rocks start from the ocean floor, where the penetration of water in the fractures of the young oceanic crust and in hydrothermal veins, and spread with flat subduction in low temperature metamorphic facies. Since the main serpentine phase in them identified by XRD was chrysotyl, which is associated with the main mineral magnetite, so it is clear that their depth of subduction was low.
Conclusion
The various microstructures identified in these rocks are mesh, sieve, augen, strip, hourly glass, etc. and the effects of elastic (microfolds and kinks) and brittle alteration. The growth of lyzardite plates in the margins of low crystallized mass nuclei is irregular and the increase of serpentine veins and strong deformation reduces the resistance of serpentinites to shear and stress. With precision on the contents, ratios and diagrams, Gysian serpentineites evaluated as subducted type. The content of FME in these rocks is very high and is a sign of re-fertility resulting from the interaction of rock/fluid during subduction stages, which distinguishes it well from other types. In the absence of antigorites in these rocks, the depth at which Gysian serpentineites created was less than 50km. According to the above, Gysian serpentineites are subducted type in the northwestern part of Iran. Along the main Neo-Tethys sutur in Iran, other subduction serpentinites have been reported in Iraq and northwestern Anatolia in Turkey and Gysian serpentinites could be assumed a part of it. 

کلیدواژه‌ها [English]

  • Ophiolite
  • Serpentinite
  • Silvana
  • Gysian
  • Neo-Tethys
-ایران نژاد، س.، 1398. پترولوژی و ژئوشیمی توده نفوذی لولکان شمال اشنویه، پایان­نامه کارشناسی­ارشد، دانشگاه ارومیه، ارومیه.
-بابایی، آ. و مجرد، م.، 1396. پترولوژی و ژئوشیمی گابروهای دره بنار زیوه، جنوب ارومیه، بیست و پنجمین همایش بلورشناسی و کانی شناسی­ایران، یزد، ایران.
-حاج ملاعلی، ا. و شهرابی، م.، 1385. نقشه 1:100000 سیلوانا، شماره 4964، سازمان زمین­شناسی کشور، تهران.
-رحیم زاده، ب.، مسعودی، ف.، معین وزیری، ح. و الهیاری، خ.، 1392. سنگ­شناسی، پتروژنز و ژئودینامیک مجموعه افیولیتی سه ول آوا شمال­غرب ایران، مجله پترولوژی، سال 4، شماره 14، ص 93-114.
-رضایی موسی درق، ع. و مجرد، م.، 1396. سنگ­های اولترامافیک افیولیت سیلوانا جنوب ارومیه، بیست و پنجمین همایش بلورشناسی و کانی­شناسی ایران، یزد، ایران.
-عبدالله، ک. و مجرد، م.، 1396. ژئوشیمی سرپانتینیت­های گیسیان-زیوه، جنوب ارومیه، سی و ششمین همایش ملی و سومین کنگره بین­المللی علوم زمین، تهران، ایران.
-عربشاهی، ا. و سبزه­ای، م.، 1391. نقشه زمین­شناسی 1:25000 سیلوانه 1، شماره (2)4964، شمال­غرب، سازمان زمین­شناسی کشور، تهران.
-علیزاده، ا.، 1390. سن جایگیری آمیزه رنگی جنوب­غرب ارومیه، سی امین گردهمایی علوم زمین، تهران، ایران.
-گیلانی، ن. و مجرد، م.، 1396. پترولوژی و ژئوشیمی گرانیتوئید سوسن آباد زیوه، جنوب ارومیه، سی و ششمین همایش ملی و سومین همایش بین­المللی علوم زمین، تهران، ایران.
-مجرد، م.، 1400. مطالعه زادگاه و دگرگونی درجه پائین میکاشیست­های حاشیه قاره­ای مرتبط با آمیزه رنگین گیسیان- جنوب ارومیه، فصلنامه پژوهش­های دانش زمین.
 
 
 
-Adamia, S.A., 1991. The Caucasus oil and gas province, occasional publications: ESRI, NewSeries, v. 7(I- II), p. 53-74.
-Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution: American journal of science, v. 304(1), p. 1-20.
-Aldanmaza, E., Koprubas, N., Gurer, O.F., Kaymakc, N. and Gourgaud, A., 2006. Geochemical constraints on the Cenozoic, OIB-type alkaline volcanic rocks of NW Turkey: Implications for mantle sources and melting processes: Lithos, v. 86, p. 50-76.
-Alexeiev, D.V., Kröner, A., Hegner, E. and Rojas-Agramonte, Y., 2016. Middle to Late Ordovician arc system in the Kyrgyz Middle Tianshan: From arc-continent collision to subsequent evolution of a Palaeozoic continental margin: Gondwana Research, v. 39, p. 261-291.
-Allen, M.B., Kheirkhah, M., Emami, M.H. and Jones, S.J., 2011. Right-lateral shear across Iran and kinematic change in the Arabia—Eurasia collision zone: Geophysical Journal International, v. 184(2), p. 555-574.
-Amiguet, E., Reynard, B., Caracas, R., Van de Moortele, B., Hilariet, N. and Wang, Y.B., 2012. Creep of phyllosilicates at the onset of plate tectonics: Earth Planetary Science Letters, v. 345, p. 142-150.
-Arabshahi, A.H. and Sabzeie, M., 2013. Geological 1:25000 map of Silvaneh1, No. 4964 II NW: Geological Survey of Iran, Tehran.     
-Azer, M.K. and Khalil, A.E.S., 2005. Petrological and mineralogical studies of Pan-African serpentinites at Bir Al-Edeid area, central Eastern Desert, Egypt: Journal of African Earth Sciences, v. 43(5), p. 525-536.
-Azizi, H. and Asahara, Y., 2013. Juvenile granite in the Sanandaj–Sirjan Zone, NW Iran: Late Jurassic–Early Cretaceous arc–continent collision: International Geology Review, v. 55, p. 1523-1540.
-Azizi, N.R.H., Aswad, K.J.A. and Koyi, H.A., 2011. Contrasting settings of serpentinite bodies in the northwestern Zagros Suture Zone, Kurdistan region, Iraq: Geological Magazine, v. 148, p. 819-837.
-Bach, W., Garrido, C.J., Paulick, H., Harvey, J. and Rosner, M., 2004. Seawater–peridotite interactions: first insights from ODP Leg 209, MAR 15°N: Geochemistry, Geophysics, Geosystems, v. 5 (9), p. 22-39.
-Barnes, J.D. and Sharp, Z.D., 2006. Achlorine isotope study of DSDP/ODP serpentinized ultramafic rocks: Insights into the serpentinization process: Chemical Geology, v. 228(4), p. 246-265.
-Berberian, M. and King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran: Canadian journal of earth sciences, v. 18(2), p. 210-265.
-Bogolepov, V.G., 1970. Problem of serpentinization of ultrabasic rocks: International Geology Review, v. 12, p. 421-32.
-Boudier, F., Baronnet, A. and Mainprice, D., 2009. Serpentine mineral replacements of natural olivine and their seismic implications: Oceanic lizardite versus subduction-related antigorite: Journal of Petrology, v. 51(1-2), p. 495-512.
-Bromiley, G.D. and Pawley, A.R., 2003. The stability of antigorite in the systems MgO–SiO2–H2O (MSH) and MgO–Al2O3–SiO2–H2O (MASH): the effects of Al3+ substitution on high pressure stability: American Mineralogist, v. 88, p. 99-108.
-Brunet, M.F., Granath, J. and Wilmsen, M., 2009. South Caspian to Central Iran basins: Introduction: Geological Society London Special Publications, v. 312, p. 1-6.
-Cannaò, E., Scambelluri, M., Agostini, S., Tonarini, S. and Godard, M., 2016. Linking serpentinit geochemistry with tectonic evolution at the subduction plate-interface: The Voltri Massif case study (Ligurian Western Alps, Italy): Geochimica et Cosmochimica Acta, v. 116, p. 115-133.   
-Charlou, J.L., Donval, J.P., Fouquet, Y., Jean-Baptiste, P. and Holm, N., 2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36 14′ N, MAR): Chemical geology, v. 191(4), p. 345-359.
-Chernak, L.J. and Hirth, G., 2010. Deformation of antigorite serpentinite at high temperature and pressure: Earth and Planetary Science Letters, v. 296, p. 23-33.
-Christensen, N.I., 2004. Serpentinites, peridotites, and seismology: International Geology Review, v. 46(9), p. 795-816.
-Coleman, R.G., 1971. Petrologic and geophysical nature of serpentinites: Geological Society of America Bulletin, v. 82(4), p. 897-918.
-Contreras Reyes, E., Grevemeyer, I., Flueh, E.R., Scherwath, M. and Heesemann, M., 2007. Alteration of the subducting oceanic lithosphere at the southern central Chile trench–outer rise: Geochemistry, Geophysics, Geosystems, v. 8(7), p. 19-35.
-Deschamps, F., Godard, M., Guillot, S. and Hattori, K., 2013. Geochemistry of subduction zone serpentinites: A review: Lithos, v. 178, p. 96-127.
-Eren Rizeli, M., Wang, K.L., Bingol, A.F. and Beyarslan, M., 2016. Mineral chemistry and petrology of mantle peridotites from the Guleman ophiolite (SE Anatolia, Turkey): evidence of a forearc setting: 13th International Conference on Gondwana to Asia, At: Trivandrum, India, v. 22.
-Escartin, J., Hirth, G. and Evans, B.W., 2001. Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere: Geology, v. 29, p. 1023-1026.
-Evans, B.W., Hattori, K. and Baronnet, A., 2013. Serpentinite: what, why, where?: Element, v. 9(2), p. 99-106.
-Faure, M., Lin, W., Chu, Y. and Lepvrier, C., 2016. Triassic tectonics of the southern margin of the South China Block: Comptes Rendus Geoscience, v. 348(1), p. 5-14.
-Evans, B.W., 2004. The serpentinite multisystem revised: chrysotile is metastable: International Geology Review, v. 46, p. 479-506.
-Francis, G.H., 1956. The serpentinite mass in Glen Urquhart, Inverness-shire, Scotlan:   American Journal of Science, v. 254(4), p. 201-226.
-Frost, B.R., Evans, K.A., Swapp, S.M., Beard, J.S. and Mothersole, F.E., 2013. The process of serpentinization in dunite from New Caledonia: Lithos, v. 178, p. 24-39.
-Ghoneim, M.F. and Hamdy, M.M., 2003. Origin of magnesite veins in serpentinites from Mount El-Rubshi and Mount El-Maiyit, Eastern Desert, Egypt: Archiwum Mineralogiczne, p. 41-63.
-Golonka, J., 2004. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic: Tectonophysics, v. 381(1-4), p. 235-273.
-Golonka, J., Oszczypko, N. and Ślączka, A., 2000. Late Carboniferous-Neogene geodynamic evolution and paleogeography of the circum-Carpathian region and adjacent areas: In Annales Societatis Geologorum Poloniae, v. 70(2), p. 107-136.
-Goncuoglu, M.C., 2010. Introduction to the Geology of Turkey: Geodynamic Evolution of the Pre-Alpine and Alpine Terranes: Publisher: General Directorate of Mineral Research and Exploration, ISBN: 978-605-4075-74.
-Green, H.W., 2007. Shearing instabilities accompanying high-pressure phase transformations and the mechanics of deep earthquakes: Proceedings of the National Academy of Science, v. 104(22), p. 9133-9138.
-Guillot, S., Schwartz, S., Reynard, B., Agard, P. and Prigent, C., 2015. Tectonic significance of serpentinites: Tectonophysics, v. 646, p. 1-19.
-Hattori, K.H. and Guillot, S., 2003. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge: Geology, v. 31(6), p. 525-528.
-Higgins, M., 2006. Quantitative textural measurements in igneous and metamorphic petrology, Cambridge University Press NewYork, 277 p.
-Hilairet, N., Reynard, B., Wang, Y., Daniel, I., Merkel, S., Nishiyama, N. and Petitgirard, S., 2007. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction: Science, v. 318(5858), p. 1910-1913.
-Hirth, G. and Guillot, S., 2013. Rheology and tectonic significance of serpentinite: Elements, v. 9(2), p. 107-113.
-Hopkinson, L., Beard, J.S. and Boulter, C.A., 2004. The hydrothermal plumbing of a serpentinite-hosted detachment: evidence from the West Iberia non-volcanic rifted continental margin: Marine Geology, v. 204(3-4), p. 301-315.
-Iyer, K., Austrheim, H., John, T. and Jamtveit, B., 2008. Serpentinization of the oceanic lithosphere and some geochemical consequences: constraints from the Leka Ophiolite Complex, Norway: Chemical Geology, v. 249, p. 66-90.
-Jagoutz, E., Palme, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Spottel, B., Lorenz V. and Wänke, H., 1979. The abundances of major, minor and trace elements in the earth's mantle as derived from primitive ultramafic nodules: Paper presented at the Lunar and Planetary Science Conference Proceedings.
-Kerrick, D., 2002. Serpentinite seduction: Science, v. 298(5597), p. 1344-1345.
-Klein, F., Bach, W., Humphris, S.E., Kahl, W.A., Jöns, N., Moskowitz, B. and Berquó, T.S., 2014. Magnetite in seafloor serpentinite some like it hot: Geology, v. 42(2), p. 135-138.
-Kretz, R., 1983. Symbols for rock-forming minerals: American Mineralogist, v. 68, p. 277-279.
-Kodolányi, J., Pettke, T., Spandler, C., Kamber, B.S. and Gméling, K., 2012. Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones: Journal of Petrology, v. 53, p. 235-270.
-Lacinska, A.M., Styles, M.T., Bateman, K., Wagner, D., Hall, M.R., Gowing, C. and Brown, P.D., 2016. Acid-dissolution of antigorite, chrysotile and lizardite for ex situ carbon capture and storage by mineralization: Chemical Geology, v. 437, p. 153-169.
-Lafay, R., Deschamps, F., Schwartz, S., Guillot, S., Godard, M., Debret, B. and Nicollet, C., 2013. High-pressure serpentinites, a trap-and-release system controlled by metamorphic conditions: Example from the Piedmont zone of the western Alps: Chemical Geology, v. 343, p. 38-54.
-Mével, C., 2003. Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Géoscience, v. 335, p. 825-852.
-Mohammadi, N., Ahmadipour, H. and Peighambari, S., 2013. Investigation of deformational behavior of serpentinites in Baft ophiolitic malange (Kerman) and its effects on the sesmic potential of the region: Iranian Journal of Geology, v. 6(24), p. 3-17.
-Malakhov, I.A., 1956. Criteria of degree of serpentinization of ultramafic rocks (Abst.): Geochemistry International, v. 214, p. 678-694.
-McCollom, T.M. and Bach, W., 2009. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks: Geochimica et Cosmochimica Acta, v. 73(3), p. 856- 875.
-Müntener, O., Manastchal, G., Desmurs, L. and Pettke, L., 2010. Plagioclase peridotites in ocean– continent transitions: refertilized mantle domains generated by melt segregation in the shallow mantle lithosphere: Journal of Petrology, v. 51, p. 255-294.
-Murzin, V.V., Varlamov, D.A., Ronkin, Y.L. and Shanina, S.N., 2013. Origin of Au-bearing rodingite in the Karabash massif of alpine-type ultramafic rocks in the southern Urals, Geology of Ore Deposits, v. 55(4), p. 278-297.
-Nadimi, A., 2010. Active strike-slip faults in the central part of the Sanandaj-Sirjan Zone of Zagros Orogen (Iran): Doctoral dissertation, PhD thesis, Faculty of Geology, University of Warsaw, Poland.
-Nadimi, A. and Konon, A., 2012. Strike-slip faulting in the central part of the Sanandaj-Sirjan Zone, Zagros Orogen, Iran: Journal of Structural Geology, v. 40, p. 2-16.
-O’Brien, J. and Rodgers, K.A., 1974. Alpine-type serpentinites from the Auckland Province—III. Petrography, mineralogy, petrochemistry, and petrogenesis: Journal of the Royal Society of New Zealand, v. 4(2), p. 141-159.
-Page, B.M., De Vito, L.A. and Coleman, R.G., 1999. Tectonic emplacement of serpentinite southeast of San Jose, California: International Geology Review, v. 41, p. 494-505.
-Palandri, J.L. and Reed, M.H., 2004. Geochemical models of metasomatism in ultramafic systems: serpentinization, rodingitization, and sea floor carbonate chimney precipitation: Geochimica et Cosmochimica Acta, v. 68(5), p. 1115-1133.
-Reinen, L.A., 2000. Seismic and aseismic slip indicators in serpentinite gouge: Geology, v. 28(2), p. 135-138.
-Robertson, A.H.F., Clift, P.D., Degnan, P.J. and Jones, G., 1991. Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 87(1-4), p. 289-343.
-Roume´jon, S., Cannat, M., Pierre Agrinier, P., Godard, M. and Andreani, M., 2015. Serpentinization and Fluid Pathways in Tectonically Exhumed Peridotites from the Southwest Indian Ridge (62–65_E): Journal of Petrology, v. 56 (4), p. 703-734.
-Rudge, J.F., Kelemen, P.B. and Spiegelman, M., 2010. A simple model of reaction-induced cracking applied to serpentinization and carbonation of peridotite: Earth and Planetary Science Letters, v. 291(1-4), p. 215-227.
-Salters, V.J. and Stracke, A., 2004. Composition of the depleted mantle: Geochemistry, Geophysics, Geosystems, v. 5(5), p. 27-46.
-Şengör, A.C., Özeren, M.S., Keskin, M., Sakınç, M., Özbakır, A.D. and Kayan, I., 2008. Easte Turkish high plateau as a small Turkic-type orogen: Implications for post-collisional crust-forming processes in Turkic-type orogens: Earth-Science Reviews, v. 90(1-2), p. 1-48.
-Shafaii Moghadam, H., Li, Q.L., Stern, R.J., Chiaradia, M., Karsli, O. and Rahimzadeh, B., 2020. The Paleogene Ophiolite Conundrum of the Iran-Iraq Border Region. Journal of the geological society, DOI: https://doi.org/10.1144/jgs2020-009.
-Sharp, Z.D. and Barnes, J.D., 2004. Water-soluble chlorides in massive seafloor serpentinites: a source of chloride in subduction zones: Earth and Planetary Sciences Letters, v. 226, p. 243-254.
-Sheikholeslami, M.R., 2015. Deformations of Palaeozoic and Mesozoic rocks in southern Sirjan, Sanandaj–SirjanZone, Iran. Journal of Asian Earth Sciences, v. 106, p. 130-149.
-Steinberg, D.S., 1960. Novye dannye o serpentinizatsii dunitov i perdotitov Urala (new data concerning the serpentinization of dunite and peridotite of the Urals): Report of 21th International Geology Congress, Doklady Soviet Geology Problem, v. 13, p. 250-260.
-Stocklin, J., 1974. Possible Ancient Continental Margin in Iran. In: Burke, C.A. and Drake, C.L., Eds., the Geology of Continental Margins, Springer, New York, p. 873-887. https://Doi.org/10.1007/978-3-662-01141-6_64.
-Talebian, M. and Jackson, J., 2004. A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran: Geophysical Journal International, v. 156(3), p. 506-526.
-Tatsumi, Y., 2005. The subduction factory: how it operates in the evolving Earth: GSA today, v. 15(7), Doi: 10.1130/1052-5173.
-Tonarini, S., Agostini, S., Doglioni, C., Innocenti, F. and Manetti, P., 2007. Evidence for serpentinite fluid in convergent margin systems: the example of El Salvador (Central America) arc lavas: Geochemistry, Geophysics, Geosystems, v. 8 (9). http:// dx.doi.org/10.1029/2006GC001508.
-Van Keken, P.E., Hacker, B.R., Syracuse, E.M. and Abers, G.A., 2011. Subduction factory:  4. Depth dependent flux of H2O from subducting slabs worldwide: Journal of Geophysical Research: Solid Earth, v. 116, Doi.org/10.1029/2010JB007922.
-Vannucchi, P., Ranero, C.R., Galeotti, S., Straub, S.M., Scholl, D.W. and McDougall-Ried, K., 2003. Fast rates of subduction erosion along the Costa Rica Pacific margin: Implications for nonsteady rates of crustal recycling at subduction zones: Journal of Geophysical Research, v. 108. Doi:10.1029/2002JB002207.
-Vils, F., Müntener, O., Kalt, A. and Ludwig, T., 2011. Implications of the serpentine phase transition on the behaviour of beryllium and lithium–boron of subducted ultramafic rock:  Geochimica et Cosmochimica Acta, v. 75(5), p. 1249-1271.
-Viti, C., Collettini, C., Tesei, T., Tarling, M.S. and Smith, S., 2018. Deformation Processes, Textural Evolution and Weakening in Retrograde Serpentinites: Minerals, v. 8. Doi:10.3390/min8060241
-Wicks, F.J. and Whittaker, E.J.W., 1977. Serpentine textures and serpentinization: Canadian Mineralogist, v. 15, p. 459-488.
-Zhihong, W. and Huafu, I., 1998. Geology, petrology and geochemistry of the mafic-ultramafic rocks in the Fujian coastal region Southeastern China, and their genesis: Ofioliti, v. 23, p. 1-6.