-ایران نژاد، س.، 1398. پترولوژی و ژئوشیمی توده نفوذی لولکان شمال اشنویه، پایاننامه کارشناسیارشد، دانشگاه ارومیه، ارومیه.
-بابایی، آ. و مجرد، م.، 1396. پترولوژی و ژئوشیمی گابروهای دره بنار زیوه، جنوب ارومیه، بیست و پنجمین همایش بلورشناسی و کانی شناسیایران، یزد، ایران.
-حاج ملاعلی، ا. و شهرابی، م.، 1385. نقشه 1:100000 سیلوانا، شماره 4964، سازمان زمینشناسی کشور، تهران.
-رحیم زاده، ب.، مسعودی، ف.، معین وزیری، ح. و الهیاری، خ.، 1392. سنگشناسی، پتروژنز و ژئودینامیک مجموعه افیولیتی سه ول آوا شمالغرب ایران، مجله پترولوژی، سال 4، شماره 14، ص 93-114.
-رضایی موسی درق، ع. و مجرد، م.، 1396. سنگهای اولترامافیک افیولیت سیلوانا جنوب ارومیه، بیست و پنجمین همایش بلورشناسی و کانیشناسی ایران، یزد، ایران.
-عبدالله، ک. و مجرد، م.، 1396. ژئوشیمی سرپانتینیتهای گیسیان-زیوه، جنوب ارومیه، سی و ششمین همایش ملی و سومین کنگره بینالمللی علوم زمین، تهران، ایران.
-عربشاهی، ا. و سبزهای، م.، 1391. نقشه زمینشناسی 1:25000 سیلوانه 1، شماره (2)4964، شمالغرب، سازمان زمینشناسی کشور، تهران.
-علیزاده، ا.، 1390. سن جایگیری آمیزه رنگی جنوبغرب ارومیه، سی امین گردهمایی علوم زمین، تهران، ایران.
-گیلانی، ن. و مجرد، م.، 1396. پترولوژی و ژئوشیمی گرانیتوئید سوسن آباد زیوه، جنوب ارومیه، سی و ششمین همایش ملی و سومین همایش بینالمللی علوم زمین، تهران، ایران.
-مجرد، م.، 1400. مطالعه زادگاه و دگرگونی درجه پائین میکاشیستهای حاشیه قارهای مرتبط با آمیزه رنگین گیسیان- جنوب ارومیه، فصلنامه پژوهشهای دانش زمین.
-Adamia, S.A., 1991. The Caucasus oil and gas province, occasional publications: ESRI, NewSeries, v. 7(I- II), p. 53-74.
-Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution: American journal of science, v. 304(1), p. 1-20.
-Aldanmaza, E., Koprubas, N., Gurer, O.F., Kaymakc, N. and Gourgaud, A., 2006. Geochemical constraints on the Cenozoic, OIB-type alkaline volcanic rocks of NW Turkey: Implications for mantle sources and melting processes: Lithos, v. 86, p. 50-76.
-Alexeiev, D.V., Kröner, A., Hegner, E. and Rojas-Agramonte, Y., 2016. Middle to Late Ordovician arc system in the Kyrgyz Middle Tianshan: From arc-continent collision to subsequent evolution of a Palaeozoic continental margin: Gondwana Research, v. 39, p. 261-291.
-Allen, M.B., Kheirkhah, M., Emami, M.H. and Jones, S.J., 2011. Right-lateral shear across Iran and kinematic change in the Arabia—Eurasia collision zone: Geophysical Journal International, v. 184(2), p. 555-574.
-Amiguet, E., Reynard, B., Caracas, R., Van de Moortele, B., Hilariet, N. and Wang, Y.B., 2012. Creep of phyllosilicates at the onset of plate tectonics: Earth Planetary Science Letters, v. 345, p. 142-150.
-Arabshahi, A.H. and Sabzeie, M., 2013. Geological 1:25000 map of Silvaneh1, No. 4964 II NW: Geological Survey of Iran, Tehran.
-Azer, M.K. and Khalil, A.E.S., 2005. Petrological and mineralogical studies of Pan-African serpentinites at Bir Al-Edeid area, central Eastern Desert, Egypt: Journal of African Earth Sciences, v. 43(5), p. 525-536.
-Azizi, H. and Asahara, Y., 2013. Juvenile granite in the Sanandaj–Sirjan Zone, NW Iran: Late Jurassic–Early Cretaceous arc–continent collision:
International Geology Review, v. 55, p. 1523-1540.
-Azizi, N.R.H., Aswad, K.J.A. and Koyi, H.A., 2011. Contrasting settings of serpentinite bodies in the northwestern Zagros Suture Zone, Kurdistan region, Iraq: Geological Magazine, v. 148, p. 819-837.
-Bach, W., Garrido, C.J., Paulick, H., Harvey, J. and Rosner, M., 2004. Seawater–peridotite interactions: first insights from ODP Leg 209, MAR 15°N: Geochemistry, Geophysics, Geosystems, v. 5 (9), p. 22-39.
-Barnes, J.D. and Sharp, Z.D., 2006. Achlorine isotope study of DSDP/ODP serpentinized ultramafic rocks: Insights into the serpentinization process: Chemical Geology, v. 228(4), p. 246-265.
-Berberian, M. and King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran: Canadian journal of earth sciences, v. 18(2), p. 210-265.
-Bogolepov, V.G., 1970. Problem of serpentinization of ultrabasic rocks: International Geology Review, v. 12, p. 421-32.
-Boudier, F., Baronnet, A. and Mainprice, D., 2009. Serpentine mineral replacements of natural olivine and their seismic implications: Oceanic lizardite versus subduction-related antigorite: Journal of Petrology, v. 51(1-2), p. 495-512.
-Bromiley, G.D. and Pawley, A.R., 2003. The stability of antigorite in the systems MgO–SiO2–H2O (MSH) and MgO–Al2O3–SiO2–H2O (MASH): the effects of Al3+ substitution on high pressure stability: American Mineralogist, v. 88, p. 99-108.
-Cannaò, E., Scambelluri, M., Agostini, S., Tonarini, S. and Godard, M., 2016. Linking serpentinit geochemistry with tectonic evolution at the subduction plate-interface: The Voltri Massif case study (Ligurian Western Alps, Italy): Geochimica et Cosmochimica Acta, v. 116, p. 115-133.
-Charlou, J.L., Donval, J.P., Fouquet, Y., Jean-Baptiste, P. and Holm, N., 2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36 14′ N, MAR): Chemical geology, v. 191(4), p. 345-359.
-Chernak, L.J. and Hirth, G., 2010. Deformation of antigorite serpentinite at high temperature and pressure: Earth and Planetary Science Letters, v. 296, p. 23-33.
-Christensen, N.I., 2004. Serpentinites, peridotites, and seismology: International Geology Review, v. 46(9), p. 795-816.
-Coleman, R.G., 1971. Petrologic and geophysical nature of serpentinites: Geological Society of America Bulletin, v. 82(4), p. 897-918.
-Contreras Reyes, E., Grevemeyer, I., Flueh, E.R., Scherwath, M. and Heesemann, M., 2007. Alteration of the subducting oceanic lithosphere at the southern central Chile trench–outer rise: Geochemistry, Geophysics, Geosystems, v. 8(7), p. 19-35.
-Deschamps, F., Godard, M., Guillot, S. and Hattori, K., 2013. Geochemistry of subduction zone serpentinites: A review: Lithos, v. 178, p. 96-127.
-Eren Rizeli, M., Wang, K.L., Bingol, A.F. and Beyarslan, M., 2016. Mineral chemistry and petrology of mantle peridotites from the Guleman ophiolite (SE Anatolia, Turkey): evidence of a forearc setting: 13th International Conference on Gondwana to Asia, At: Trivandrum, India, v. 22.
-Escartin, J., Hirth, G. and Evans, B.W., 2001. Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere: Geology, v. 29, p. 1023-1026.
-Evans, B.W., Hattori, K. and Baronnet, A., 2013. Serpentinite: what, why, where?: Element, v. 9(2), p. 99-106.
-Faure, M., Lin, W., Chu, Y. and Lepvrier, C., 2016. Triassic tectonics of the southern margin of the South China Block: Comptes Rendus Geoscience, v. 348(1), p. 5-14.
-Evans, B.W., 2004. The serpentinite multisystem revised: chrysotile is metastable: International Geology Review, v. 46, p. 479-506.
-Francis, G.H., 1956. The serpentinite mass in Glen Urquhart, Inverness-shire, Scotlan: American Journal of Science, v. 254(4), p. 201-226.
-Frost, B.R., Evans, K.A., Swapp, S.M., Beard, J.S. and Mothersole, F.E., 2013. The process of serpentinization in dunite from New Caledonia: Lithos, v. 178, p. 24-39.
-Ghoneim, M.F. and Hamdy, M.M., 2003. Origin of magnesite veins in serpentinites from Mount El-Rubshi and Mount El-Maiyit, Eastern Desert, Egypt: Archiwum Mineralogiczne, p. 41-63.
-Golonka, J., 2004. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic: Tectonophysics, v. 381(1-4), p. 235-273.
-Golonka, J., Oszczypko, N. and Ślączka, A., 2000. Late Carboniferous-Neogene geodynamic evolution and paleogeography of the circum-Carpathian region and adjacent areas: In Annales Societatis Geologorum Poloniae, v. 70(2), p. 107-136.
-Goncuoglu, M.C., 2010. Introduction to the Geology of Turkey: Geodynamic Evolution of the Pre-Alpine and Alpine Terranes: Publisher: General Directorate of Mineral Research and Exploration, ISBN: 978-605-4075-74.
-Green, H.W., 2007. Shearing instabilities accompanying high-pressure phase transformations and the mechanics of deep earthquakes: Proceedings of the National Academy of Science, v. 104(22), p. 9133-9138.
-Guillot, S., Schwartz, S., Reynard, B., Agard, P. and Prigent, C., 2015. Tectonic significance of serpentinites: Tectonophysics, v. 646, p. 1-19.
-Hattori, K.H. and Guillot, S., 2003. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge: Geology, v. 31(6), p. 525-528.
-Higgins, M., 2006. Quantitative textural measurements in igneous and metamorphic petrology, Cambridge University Press NewYork, 277 p.
-Hilairet, N., Reynard, B., Wang, Y., Daniel, I., Merkel, S., Nishiyama, N. and Petitgirard, S., 2007. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction: Science, v. 318(5858), p. 1910-1913.
-Hirth, G. and Guillot, S., 2013. Rheology and tectonic significance of serpentinite: Elements, v. 9(2), p. 107-113.
-Hopkinson, L., Beard, J.S. and Boulter, C.A., 2004. The hydrothermal plumbing of a serpentinite-hosted detachment: evidence from the West Iberia non-volcanic rifted continental margin: Marine Geology, v. 204(3-4), p. 301-315.
-Iyer, K., Austrheim, H., John, T. and Jamtveit, B., 2008. Serpentinization of the oceanic lithosphere and some geochemical consequences: constraints from the Leka Ophiolite Complex, Norway: Chemical Geology, v. 249, p. 66-90.
-Jagoutz, E., Palme, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Spottel, B., Lorenz V. and Wänke, H., 1979. The abundances of major, minor and trace elements in the earth's mantle as derived from primitive ultramafic nodules: Paper presented at the Lunar and Planetary Science Conference Proceedings.
-Kerrick, D., 2002. Serpentinite seduction: Science, v. 298(5597), p. 1344-1345.
-Klein, F., Bach, W., Humphris, S.E., Kahl, W.A., Jöns, N., Moskowitz, B. and Berquó, T.S., 2014. Magnetite in seafloor serpentinite some like it hot: Geology, v. 42(2), p. 135-138.
-Kretz, R., 1983. Symbols for rock-forming minerals: American Mineralogist, v. 68, p. 277-279.
-Kodolányi, J., Pettke, T., Spandler, C., Kamber, B.S. and Gméling, K., 2012. Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones: Journal of Petrology, v. 53, p. 235-270.
-Lacinska, A.M., Styles, M.T., Bateman, K., Wagner, D., Hall, M.R., Gowing, C. and Brown, P.D., 2016. Acid-dissolution of antigorite, chrysotile and lizardite for ex situ carbon capture and storage by mineralization: Chemical Geology, v. 437, p. 153-169.
-Lafay, R., Deschamps, F., Schwartz, S., Guillot, S., Godard, M., Debret, B. and Nicollet, C., 2013. High-pressure serpentinites, a trap-and-release system controlled by metamorphic conditions: Example from the Piedmont zone of the western Alps: Chemical Geology, v. 343, p. 38-54.
-Mével, C., 2003. Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Géoscience, v. 335, p. 825-852.
-Mohammadi, N., Ahmadipour, H. and Peighambari, S., 2013. Investigation of deformational behavior of serpentinites in Baft ophiolitic malange (Kerman) and its effects on the sesmic potential of the region: Iranian Journal of Geology, v. 6(24), p. 3-17.
-Malakhov, I.A., 1956. Criteria of degree of serpentinization of ultramafic rocks (Abst.): Geochemistry International, v. 214, p. 678-694.
-McCollom, T.M. and Bach, W., 2009. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks: Geochimica et Cosmochimica Acta, v. 73(3), p. 856- 875.
-Müntener, O., Manastchal, G., Desmurs, L. and Pettke, L., 2010. Plagioclase peridotites in ocean– continent transitions: refertilized mantle domains generated by melt segregation in the shallow mantle lithosphere: Journal of Petrology, v. 51, p. 255-294.
-Murzin, V.V., Varlamov, D.A., Ronkin, Y.L. and Shanina, S.N., 2013. Origin of Au-bearing rodingite in the Karabash massif of alpine-type ultramafic rocks in the southern Urals, Geology of Ore Deposits, v. 55(4), p. 278-297.
-Nadimi, A., 2010. Active strike-slip faults in the central part of the Sanandaj-Sirjan Zone of Zagros Orogen (Iran): Doctoral dissertation, PhD thesis, Faculty of Geology, University of Warsaw, Poland.
-Nadimi, A. and Konon, A., 2012. Strike-slip faulting in the central part of the Sanandaj-Sirjan Zone, Zagros Orogen, Iran: Journal of Structural Geology, v. 40, p. 2-16.
-O’Brien, J. and Rodgers, K.A., 1974. Alpine-type serpentinites from the Auckland Province—III. Petrography, mineralogy, petrochemistry, and petrogenesis: Journal of the Royal Society of New Zealand, v. 4(2), p. 141-159.
-Page, B.M., De Vito, L.A. and Coleman, R.G., 1999. Tectonic emplacement of serpentinite southeast of San Jose, California: International Geology Review, v. 41, p. 494-505.
-Palandri, J.L. and Reed, M.H., 2004. Geochemical models of metasomatism in ultramafic systems: serpentinization, rodingitization, and sea floor carbonate chimney precipitation: Geochimica et Cosmochimica Acta, v. 68(5), p. 1115-1133.
-Reinen, L.A., 2000. Seismic and aseismic slip indicators in serpentinite gouge: Geology, v. 28(2), p. 135-138.
-Robertson, A.H.F., Clift, P.D., Degnan, P.J. and Jones, G., 1991. Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 87(1-4), p. 289-343.
-Roume´jon, S., Cannat, M., Pierre Agrinier, P., Godard, M. and Andreani, M., 2015. Serpentinization and Fluid Pathways in Tectonically Exhumed Peridotites from the Southwest Indian Ridge (62–65_E): Journal of Petrology, v. 56 (4), p. 703-734.
-Rudge, J.F., Kelemen, P.B. and Spiegelman, M., 2010. A simple model of reaction-induced cracking applied to serpentinization and carbonation of peridotite: Earth and Planetary Science Letters, v. 291(1-4), p. 215-227.
-Salters, V.J. and Stracke, A., 2004. Composition of the depleted mantle: Geochemistry, Geophysics, Geosystems, v. 5(5), p. 27-46.
-Şengör, A.C., Özeren, M.S., Keskin, M., Sakınç, M., Özbakır, A.D. and Kayan, I., 2008. Easte Turkish high plateau as a small Turkic-type orogen: Implications for post-collisional crust-forming processes in Turkic-type orogens: Earth-Science Reviews, v. 90(1-2), p. 1-48.
-Shafaii Moghadam, H., Li, Q.L., Stern, R.J., Chiaradia, M., Karsli, O. and Rahimzadeh, B., 2020. The Paleogene Ophiolite Conundrum of the Iran-Iraq Border Region. Journal of the geological society, DOI: https://doi.org/10.1144/jgs2020-009.
-Sharp, Z.D. and Barnes, J.D., 2004. Water-soluble chlorides in massive seafloor serpentinites: a source of chloride in subduction zones: Earth and Planetary Sciences Letters, v. 226, p. 243-254.
-Sheikholeslami, M.R., 2015. Deformations of Palaeozoic and Mesozoic rocks in southern Sirjan, Sanandaj–SirjanZone, Iran. Journal of Asian Earth Sciences, v. 106, p. 130-149.
-Steinberg, D.S., 1960. Novye dannye o serpentinizatsii dunitov i perdotitov Urala (new data concerning the serpentinization of dunite and peridotite of the Urals): Report of 21th International Geology Congress, Doklady Soviet Geology Problem, v. 13, p. 250-260.
-Talebian, M. and Jackson, J., 2004. A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran: Geophysical Journal International, v. 156(3), p. 506-526.
-Tatsumi, Y., 2005. The subduction factory: how it operates in the evolving Earth: GSA today, v. 15(7), Doi:
10.1130/1052-5173.
-Tonarini, S., Agostini, S., Doglioni, C., Innocenti, F. and Manetti, P., 2007. Evidence for serpentinite fluid in convergent margin systems: the example of El Salvador (Central America) arc lavas: Geochemistry, Geophysics, Geosystems, v. 8 (9). http:// dx.doi.org/10.1029/2006GC001508.
-Van Keken, P.E., Hacker, B.R., Syracuse, E.M. and Abers, G.A., 2011. Subduction factory: 4. Depth dependent flux of H2O from subducting slabs worldwide: Journal of Geophysical Research: Solid Earth, v. 116, Doi.org/10.1029/2010JB007922.
-Vannucchi, P., Ranero, C.R., Galeotti, S., Straub, S.M., Scholl, D.W. and McDougall-Ried, K., 2003. Fast rates of subduction erosion along the Costa Rica Pacific margin: Implications for nonsteady rates of crustal recycling at subduction zones: Journal of Geophysical Research, v. 108. Doi:10.1029/2002JB002207.
-Vils, F., Müntener, O., Kalt, A. and Ludwig, T., 2011. Implications of the serpentine phase transition on the behaviour of beryllium and lithium–boron of subducted ultramafic rock: Geochimica et Cosmochimica Acta, v. 75(5), p. 1249-1271.
-Viti, C., Collettini, C., Tesei, T., Tarling, M.S. and Smith, S., 2018. Deformation Processes, Textural Evolution and Weakening in Retrograde Serpentinites: Minerals, v. 8. Doi:10.3390/min8060241
-Wicks, F.J. and Whittaker, E.J.W., 1977. Serpentine textures and serpentinization: Canadian Mineralogist, v. 15, p. 459-488.
-Zhihong, W. and Huafu, I., 1998. Geology, petrology and geochemistry of the mafic-ultramafic rocks in the Fujian coastal region Southeastern China, and their genesis: Ofioliti, v. 23, p. 1-6.