ردیابی منابع رطوبتی و تحلیل شاخص‌های ناپایداری منجر به بارش‌های سنگین شمال غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه جغرافیای طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

مقدمه
مطالعه مخاطرات اقلیمی نظیر بارش سنگین به دلیل تأثیر مستقیم در ایجاد سیل بسیار حائز اهمیت است. به دلیل تغییرات اقلیمی که جهان دچار آن شده است مخاطرات اقلیمی افزایش ‌یافته است. آنچه مسلم است انسان نمی‌تواند از بروز مخاطرات جوی جلوگیری کند ولی در پیش‌آگاهی از این رخدادها تحت­تأثیر پیش‌بینی‌های اقلیمی می‌تواند از نتایج مخرب این مخاطرات بکاهد. همچنین با توجه به نقش بسیار پررنگ انسان در افزایش مهم‌ترین واداشت اقلیمی یعنی گازهای گلخانه‌ای به‌طور ویژه گاز دی اکسید کربن، با مدیریت سوخت‌های فسیلی و افزایش نیروگاه‌های انرژی‌های نو که به انرژی‌های پاک معروف هستند می‌توان از تغییرات اقلیمی که مسبب رخدادهای حدی هستند کاست. مطلب دیگر مدیریت بارش سنگین برای مهار آب عظیم برای استفاده در کشاورزی است که به نظر می‌رسد با انجام تدابیر بتوان از این رخداد جوی بهره برد. نکته مهم دیگر در زمینه بارش سنگین در منطقه شمال غرب ایران توجه به احداث مناطق مسکونی در جاهای دور از مسیل‌ها می‌باشد که با شروع سیل ناشی از بارش سنگین آسیب‌پذیر هستند. مهم‌ترین مسبب رخدادهای حدی نظیر بارش سنگین در حال حاضر تغییرات اقلیمی است. عامل اصلی ایجاد تغییرات اقلیمی وادشت گازهای گلخانه‌ای می‌باشد. مهم‌ترین نوع گازهای گلخانه‌ای گازکربینک (دی اکسیدکربن) است. اصلی‌ترین دلیل افزایش این گاز که عمر زیاد داشته و تجزیه‌پذیری بسیار کمی دارد، انسان می‌باشد. به ‌عبارت دیگر، مسبب اصلی افزایش و تشدید رخدادهای حدی عملکرد نادرست انسان در مواجه با طبیعت است. منطقه شمال غرب ایران به علت توپوگرافی کوهستانی و قرارگیری در مسیر اصلی عبور سیکلون‌های مدیترانه، مستعد رخداد بارش­های سنگین است. این پژوهش با هدف شناسایی منابع رطوبتی بارش سنگین شمال غرب ایران و همچنین تحلیل شاخص‌های ناپایداری مرتبط با آن انجام گرفته است.
مواد و روش­ها
منطقه مورد مطالعه در این تحقیق، شمال غرب ایران شامل استان‌های آذربایجان غربی، آذربایجان شرقی، اردبیل، شمال کردستان و غرب زنجان می‌باشد. در این پژوهش داده‌های بارش به‌صورت روزانه و ساعتی (3 ساعته) و داده‌های باد (سرعت و جهت) به‌صورت ساعتی (3 ساعته) برای 23 ایستگاه سینوپتیک واقع در شمال غرب ایران در دوره 1990-2019 از سازمان هواشناسی ایران www.irimo.ir اخذ گردید.
داده‌های جو بالای ایستگاه تبریز (تنها ایستگاه جو بالا در شمال غرب ایران) از طریق سایت دانشگاه وایومینگ امریکا http://weather.uwyo.edu/upperair/sounding.html به دست آمد. داده‌های سطح فوقانی جوی این پژوهش از پایگاه NCEP/NCAR تارنمای www.cdc.noaa.gov اخذ شد. برآوردهای حاصل از آزمون و خطا نشان داد که اگر صدک بالاتر از 99 و مساحت تحت پوشش بارش سنگین بیش از 30 درصد انتخاب شود، شرایط همدید توجیه مناسبی برای بارش‌های سنگین ارائه خواهند داد. در این مقاله، روزهایی که حداقل 7 ایستگاه به‌طور هم‌زمان در منطقه مورد مطالعه دارای بارش حداقل 20 میلی‌متر بودند انتخاب شدند. در این مطالعه با استفاده از شاخص‌های TTI،CAPE ،KI ،LI ، SI و SWEAT  وضعیت ناپایداری جو در شمال غرب ایران در ایستگاه نماینده منطقه (تبریز)، در روزهای رخداد بارش سنگین (43 روز) مورد ارزیابی قرار گرفت. بر اساس تحلیل‌ عاملی در محیط نرم‌افزار SPSS از بین 6 شاخص، عامل‌های اصلی شناسایی شد، سپس با استفاده از تحلیل ‌خوشه‌ای، خوشه‌های اصلی استخراج گردید و نمودار اسکیوتی روزهای نماینده هر خوشه در محیط نرم‌افزار RAOB ترسیم و تفسیر شدند. برای انتخاب ایستگاه‌های نماینده منطقه شمال غرب ایران، 15 درصد (3 ایستگاه همدید) ایستگاه‌های منطقه تحقیق، بر اساس ارتفاع از سطح دریا (متر)، اقلیم (تعداد بارش سنگین و میانگین بارش سنگین در بازه زمانی مورد مطالعه) و فاصله زیاد از همدیگر (بر اساس کیلومتر و موقعیت جغرافیایی) انتخاب شدند. با استفاده از تحلیل خوشه‌ای در محیط نرم‌افزار SPSS، بر اساس متغیرهای مؤثر (رطوبت نسبی، بردار باد، آب قابل بارش) تراز میانی جو در منطقه شمال غرب ایران، خوشه‌ها استخراج شدند. سپس نماینده هر خوشه تعیین گردید و برای هر روز نماینده­ی رخداد بارش سنگین (4 روز از 43 رخداد بارش سنگین)، در هر 3 ایستگاه نماینده­ی منطقه مورد مطالعه (3 ایستگاه از 23 ایستگاه همدیدی)، مسیر و منشأ رطوبت بارش‌های سنگین با روش پس‌رو (72 ساعت قبل از روزهای بارش سنگین در شمال غرب ایران) و با استفاده از داده‌های جهانی آنالیز شده در مرکز ملی پیش‌بینی محیطی و تحقیقات جوی آمریکا (NCEP/NCAR) با گام زمانی 6 ساعته با قدرت تفکیک مکانی 5/2× 5/2 طول و عرض جغرافیایی برای ترازهای 850، 700 و 550 هکتوپاسکال، با مدل تحت وب HYSPLIT ردیابی انجام شد. با استفاده از نرم‌افزار WRPLOT نمودار گلباد برای روزهای نماینده در ایستگاه‌های نماینده شمال غرب ایران ترسیم و تفسیر شد. نمودار ترکیبی باد و بارش به‌صورت ساعتی، در محیط نرم‌افزار Excel برای روزهای نماینده در ایستگاه‌های نماینده منطقه پژوهش ترسیم و تفسیر شد.
نتایج
با توجه به معیارهای بارش سنگین در این مطالعه، 43 رخداد حدی بارش در دوره مشاهداتی (1990-2019) شناسایی شد. با استفاده از تحلیل خوشه‌ای سلسه‌ مراتبی به روش وارد با فاصله اقلیدوسی، از 43 رخداد بارش حدی، 2 خوشه اصلی استخراج شد. خوشه اول، رخدادهای بارش سنگین با صعود دینامیکی در منطقه مطالعه را نشان می‌دهد و خوشه دوم، شامل رخدادهای بارش سنگین با صعود همرفتی در منطقه پژوهش هستند. از بین دو خوشه، خوشه اول فراوانی بیشتری دارد و نشان از غالب بودن بارش‌های سنگین با منشأ دینامیکی به بارش‌های سنگین با ماهیت ترمودینامیکی در منطقه مطالعه در دوره مورد بررسی را دارد. با ترسیم نمودار اسکیوتی در محیط نرم‌افزار RAOB برای روزهای نماینده هر خوشه، شرایط ناپایداری در روزهای نماینده نشان از تشدید و ثبات ناپایداری جو در ترازهای بالای 850 هکتوپاسکال برای نماینده خوشه دینامیکی را داشت. در نمودار اسکیوتی روز نماینده، خوشه ترمودینامیکی ناپایداری حداکثر تا تراز 850 هکتوپاسکال مشاهده گردید. محاسبات نشان داد که با ‌توجه‌ به شاخص‌های ناپایداری و نمودار ترمودینامیکی اسکیوتی، نقش عامل همرفت در بارش‌های سنگین شمال غرب ایران کم و عامل دینامیکی دلیل اصلی بارش‌های سنگین بوده است. نتایج مطالعه بر اساس نمودار گلباد، حاکی از آن است که بادهای غالب مسبب رخدادهای بارش سنگین از سمت جنوب غربی وزیده‌اند و به‌طور متوسط 5/3 متر بر ثانیه سرعت داشته‌اند. خروجی نمودار HYSPLIT نیز تأییدکنندۀ جهت جنوب غربی منطقه مطالعه برای مسیر ورودی رطوبت بارش‌های حدی است. همچنین نتایج نمودار ترکیبی سرعت باد و بارش به‌صورت ساعتی نشان داد که حداکثر سرعت باد و بیشینه بارش در روزهای بارش سنگین، ساعت 12 گرینویچ معادل 15:30 به‌وقت محلی بوده است که نشان از تقویت سیستم دینامیکی مؤثر در منطقه در این ساعت هست؛ به عبارت دیگر، چرخند مستقر در این ساعت با همگرایی ایجاد شده، بیشینه رطوبت را به منطقه کشانده و با صعود شدید موجبات رخداد بارش‌های سنگین شمال غرب ایران را مهیا کرده است. بر اساس محاسبات انجام‌گرفته متوسط متغیری‌های جوی آب قابل بارش، رطوبت نسبی و سرعت بردار باد در رخدادهای حدی بارش در شمال غرب ایران به ترتیب 16 کیلوگرم بر متر مربع، 68 درصد و 20 متر بر ثانیه بوده است.
نتیجه­‌گیری
بر اساس پژوهش انجام ‌شده در منطقه شمال غرب ایران، در دوره 1990-2019 در زمینه بارش سنگین، نتایج نشان دادند که با ‌توجه ‌به شاخص‌های ناپایداری و نمودار ترمودینامیکی اسکیوتی، نقش عامل همرفت در بارش‌های سنگین بسیار کم و عامل دینامیکی دلیل اصلی بارش‌های سنگین بوده است. نتایج مطالعه بر اساس مدل HYSPLIT نشان داد که مسیر اصلی ورود رطوبت به منطقه مورد مطالعه، سمت جنوب غربی است و منشأ اصلی تأمین رطوبت بارش سنگین، دریای سرخ است. نتایج مطالعه بر اساس نمودار گلباد، حاکی از آن است که بادهای غالب در رخدادهای بارش سنگین از سمت جنوب غربی وزیده‌اند و سرعت آن‌ها به‌طور متوسط 5/3 متر بر ثانیه بوده است. نمودار ترکیبی سرعت باد و بارش به‌صورت ساعتی نشان داد که حداکثر سرعت باد در روزهای بارش سنگین، ساعت 12 گرینویچ معادل 15:30 به‌وقت محلی بوده است که نشان از تقویت سیستم دینامیکی مؤثر در منطقه مورد مطالعه در این ساعت است. انسان توانایی حذف مخاطرات جوی را ندارد. مخاطرات جوی جزئی از طبیعت هستند و انسان فقط قادر است از فراوانی و شدت این رخدادها بکاهد. در شمال غرب ایران نیز بهترین راهکار مقابله با خطرات ناشی از بارش سنگین، شناسایی علل پیدایش این رخداد، از قبیل منابع رطوبتی تأمین‌ کننده بارش سنگین و ارزیابی شاخص‌های ناپایداری که نشان از شرایط صعود برای تشکیل بارش سنگین هستند است. در گام بعدی اطلاع‌رسانی از وقوع این رخداد و هشدار بابت احتمال سیل به ساکنان منطقه نظیر کشاورزان، مسافران و ... است. بیمه کردن محصول و خانه‌های مسکونی، احداث خانه‌های مسکونی مناطق مستعد بر روی پایه‌های بلند با ارتفاع 3 یا 4 متری، افزایش پوشش گیاهی و نهال‌کاری با هدف افزایش نفوذپذیری خاک، لایروبی رودخانه‌ها برای جلوگیری از افزایش ارتفاع آب در اثر ته‌نشین شدن رسوبات، انجام اقدامات حفاظتی در ساحل رودخانه‌ها با هدف کاهش فرسایش خاک در مناطق ساحلی، استفاده از آب‌بندهای بتونی سیار در موقع بارش در مناطق کشاورزی و مسکونی با هدف جلوگیری از آسیب‌های سیل احتمالی در مواقع بارش سنگین و اجتناب از حمل ‌و نقل‌های غیر ضروری به دلیل کاهش دید، لغزندگی و آب‌گرفتگی معابر شهری و جاده‌ای از راهکارهای عمده برای کاهش تلفات ناشی از بارش سنگین محسوب می‌شوند. نتایج این پژوهش از لحاظ غالب بودن ناپایداری دینامیکی در بارش‌های سنگین، رخداد بارش سنگین در فصل بهار با علل همرفتی، رخداد بارش حدی با تأمین رطوبتی دریای سرخ توسط سیکلون مدیترانه و در تأیید تقویت سیکلون‌های مسبب بارش سنگین در ساعت 12 به‌وقت گرینویچ با نتایج سایر پژوهشگران همخوانی مطلوبی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Tracking moisture sources and analysis of instability indicators leading to heavy rains in Northwest Iran

نویسندگان [English]

  • Ali Shahi
  • Bromand Salahi
Department of Physical Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Introduction
The study of climate hazards such as heavy precipitation is very important due to its direct impact on flooding. Due to the climate change that the world has experienced, climate hazards have increased. What is certain is that humans cannot prevent the occurrence of climate hazards, but by being aware of these events in advance, under the influence of climate forecasts, they can reduce the destructive consequences of these hazards. Also, considering the very prominent role of humans in increasing the most important climate forcing, namely greenhouse gases, especially carbon dioxide, by managing fossil fuels and increasing new energy power plants, which are known as clean energies, climate changes that cause extreme events can be reduced. Another issue is the management of heavy precipitation to control large amounts of water for use in agriculture, which seems to be able to benefit from this weather event by taking measures. Another important point regarding heavy precipitation in the northwest region of Iran is to pay attention to the construction of residential areas in places far from rivers, which are vulnerable to flooding caused by heavy precipitation. The most important cause of extreme events such as heavy precipitation is currently climate change. The main factor causing climate change and desertification is greenhouse gases. The most important type of greenhouse gas is carbon dioxide. The main reason for the increase in this gas, which has a long life and is very poorly degradable, is humans. In other words, the main cause of the increase and intensification of extreme events is human misbehavior in dealing with nature. The northwest region of Iran is prone to heavy precipitation due to its mountainous topography and location on the main path of Mediterranean cyclones. This research was conducted with the aim of identifying the moisture sources of heavy precipitation in northwest Iran and also analyzing the instability indicators related to it.
 
Materials and Methods
The study area in this study is northwest Iran, including West Azarbaijan, East Azarbaijan, Ardabil, North Kurdistan, and West Zanjan provinces. In this study, daily and hourly (3-hour) precipitation data and hourly (3-hour) wind data (speed and direction) were obtained from the Iranian Meteorological Organization (www.irimo.ir) for 23 synoptic stations located in northwest Iran during the period 1990-2019. The upper atmosphere data of the Tabriz station (the only upper atmosphere station in northwest Iran) were obtained from the University of Wyoming website (http://weather.uwyo.edu/upperair/sounding.html). The upper atmosphere data of this study were obtained from the NCEP/NCAR database (www.cdc.noaa.gov). Trial and error estimates showed that if the percentile is higher than 99 and the area covered by heavy precipitation is more than 30%, synoptic conditions will provide a good justification for heavy precipitation.
In this paper, days when at least 7 stations in the study area simultaneously had at least 20 mm of precipitation were selected. In this study, using TTI, CAPE, KI, LI, SI and SWEAT indices, the state of atmospheric instability in northwest Iran was evaluated at a representative station in the region (Tabriz) on days of heavy precipitation (43 days). Based on factor analysis in the SPSS software environment, the main factors were identified from among the 6 indicators, then using cluster analysis, the main clusters were extracted and the Skew-T diagram of the representative days of each cluster was drawn and interpreted in the RAOB software environment. To select representative stations for the northwest region of Iran, 15% (3 synoptic stations) of the stations in the study area were selected based on altitude (meters), climate (number of heavy precipitation and average heavy precipitation during the study period), and large distance from each other (based on kilometers and geographical location). Using cluster analysis in the SPSS software environment, clusters were extracted based on the effective variables (relative humidity, wind vector, precipitable water) of the mid-level atmosphere in the northwest region of Iran. Then, the representative of each cluster was determined and for each representative day of heavy precipitation event (4 days out of 43 heavy precipitation events), in each of the 3 representative stations of the study area (3 stations out of 23 synoptic stations), the path and source of moisture of heavy precipitation were traced using the backward method (72 hours before the days of heavy precipitation in northwest Iran) and using global data analyzed at the  National Centers for Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR) with a time step of 6 hours with a spatial resolution of 2.5 × 2.5 longitude and latitude for the levels of 850, 700 and 550 hectopascals, with the HYSPLIT web model. The wind gust diagram was drawn and interpreted using the WRPLOT software for the representative days at the representative stations of northwest Iran. The combined wind and precipitation diagram was drawn and interpreted hourly in the Excel software environment for the representative days at the representative stations of the study area.
 
Results and Discussion
According to the criteria for heavy precipitation in this study, 43 extreme precipitation events were identified in the observation period (1990-2019). Using hierarchical cluster analysis using the Ward method with Euclidean distance, 2 main clusters were extracted from the 43 extreme precipitation events. The first cluster shows heavy precipitation events with dynamic ascent in the study area, and the second cluster includes heavy precipitation events with convective ascent in the research area. Of the two clusters, the first cluster has a higher frequency and indicates the dominance of heavy precipitation with dynamic origin over heavy precipitation with thermodynamic nature in the study area during the period under study. By drawing the Skew-T diagram in the RAOB software environment for representative days of each cluster, the instability conditions on representative days indicated the intensification and stability of atmospheric instability at levels above 850 hectopascals for the representative dynamic cluster. In the representative day's Skew-T diagram, the thermodynamic instability cluster was observed up to a maximum level of 850 hectopascals. Calculations showed that, considering the instability indices and the Skew-T thermodynamic diagram, the role of the convection factor in heavy precipitation  in northwest Iran was low and the dynamic factor was the main reason for heavy precipitation. The results of the study based on the windrose diagram indicate that the prevailing winds causing heavy precipitation  events blew from the southwest and had an average speed of 3.5 m/s. The output of the HYSPLIT diagram also confirms the southwest direction of the study area for the moisture input path of extreme precipitation. Also, the results of the combined hourly wind speed and precipitation diagram showed that the maximum wind speed and maximum precipitation on heavy precipitation  days were at 12:00 GMT, equivalent to 15:30 local time, which indicates the strengthening of the effective dynamic system in the region at this hour. In other words, the cyclone located at this hour, with the convergence created, has brought maximum humidity to the region and, with its sharp ascent, has provided the cause of heavy precipitation  in northwest Iran. Based on the calculations, the average atmospheric variability of precipitable water, relative humidity, and wind speed in extreme precipitation events in northwest Iran has been 16 kg/m2, 68 percent, and 20 m/s, respectively.
 
Conclusion
Based on the research conducted in the northwest region of Iran, in the period 1990-2019 on heavy precipitation, the results showed that, considering the instability indices and the Skew-T thermodynamic diagram, the role of the convection factor in heavy precipitation was very low and the dynamic factor was the main reason for heavy precipitation. The results of the study based on the HYSPLIT model showed that the main path of moisture entry into the study area is the southwest and the main source of moisture supply for heavy precipitation is the Red Sea. The results of the study based on the windrose diagram indicate that the prevailing winds in heavy precipitation events blew from the southwest and their speed was 3.5 m/s on average. The combined hourly wind speed and precipitation diagram showed that the maximum wind speed on heavy precipitation days was at 12:00 GMT, equivalent to 15:30 local time, which indicates the strengthening of the effective dynamic system in the study area at this hour. Humans cannot eliminate weather hazards. Weather hazards are part of nature, and humans can only reduce the frequency and severity of these events. In the northwest of Iran, the best solution to deal with the risks caused by heavy precipitation  is to identify the causes of this event, such as the moisture sources that provide heavy precipitation , and to evaluate instability indicators that indicate the conditions for the formation of heavy precipitation. The next step is to inform the residents of the region, such as farmers, travelers, and others, about the occurrence of this event and warn them of the possibility of flooding. Insuring crops and residential houses, constructing residential houses in susceptible areas on high foundations with a height of 3 or 4 meters, increasing vegetation cover and planting seedlings with the aim of increasing soil permeability, dredging rivers to prevent water levels from rising due to sediment deposition, taking protective measures on river banks with the aim of reducing soil erosion in coastal areas, using mobile concrete dams during precipitation  in agricultural and residential areas with the aim of preventing possible flood damage during heavy precipitation , and avoiding unnecessary transportation due to reduced visibility, slipperiness, and flooding of urban and roadways are considered major solutions to reduce losses caused by heavy precipitation. The results of this study are in good agreement with the results of other researchers in terms of the dominance of dynamic instability in heavy rainfall, the occurrence of heavy rainfall in the spring due to convective causes, the occurrence of extreme rainfall due to the supply of moisture to the Red Sea by the Mediterranean cyclone, and the confirmation of the strengthening of cyclones causing heavy rainfall at 12:00 GMT.

کلیدواژه‌ها [English]

  • Cluster Analysis
  • Factor Analysis
  • Heavy Precipitation
  • HYSPLIT
  • RAOB
  • Northwest Iran
Alexander, L.V., Zhang, X., Peterson, T.C., Caesar, J., Gleason, B., Klein Tank, A.M.G. and Vazquez‐Aguirre, J.L., 2006. Global observed changes in daily climate extremes of temperature and precipitation, Journal of Geophysical Research: Atmospheres, v. 111(D5).‏ https://doi.org/10.1029/2005JD006290
Alijani, B., 2013. Climate of Iran. Payam Noor University Publications. The twelfth print (In Persian).
Alijani, B., 2013. Synoptic Climatology. Samt Publications. The seventh edition (In Persian).
Alijani, B., Khosravi, M. and Esmailnejad, M., 2011. A synoptic analysis of January 6, 2008 heavy precipitation in the southeast of Iran, Journal of Climate Research, v. 1(3-4), p. 3-14. SID. https://sid.ir/paper/213093/en (In Persian).
Asakereh, H., 2017. Fundamentals of Research in Climatology. Zanjan University Press, First Edition (In Persian).
Ashrafi, K., Motlagh, M.S. and Aslmand, A., 2013. Investigating the paths of dust storms over Iran using numerical modeling and satellite images, Environmental Science and Bioengineering, v. 56, p. 3-12
Bayat, A., Saligheh, M. and Akbari, M., 2017. Climatology of mediterranean winter season rain producing cyclones in Iran, journal of spatial analysis environmental hazarts, v. 4(2), p. 1-18. Sid. Https://sid.ir/paper/264783/en
Beiranvand, I., Gabdomkar, A., Abbasi, A. and Khodagholi, M., 2022. Statistical-Synoptic Analysis of April 2019 Heavy Rainfall in Doroud-Boroujerd Basin, Journal of Natural Environmental Hazards, v. 11(32), p. 169-188.
Doi: 10.22111/jneh.2022.38564.1806 (In Persian).
Doi: 10.22113/jmst.2019.182862.2282 (in Persian).
Draxler, R., Stunder, B., Rolph, G., Stein, A. and Taylor, A., 2009. HYSPLIT4 user's guide, Version 4.9. 1-231.
Farajzadeh, M., 2013. Climate Risks in Iran. Samt Publications. The First print (In Persian).
Halabian, A.H. and Hossienalipour, J.F., 2016. Synoptic analysis of climatic hazards in southwestern Iran (case study: flood generating heavy precipitation of Azar 1391), Journal of Spatial Analysis Environmental Hazarts, v. 2(4), p. 31-46. http://jsaeh.khu.ac.ir/article-1-2530-fa.html (In Persian).
https://doi.org/10.1007/s00382-020-05336-w
Javanmard, S., Yatagai, A., Nodzu, M.I., BodaghJamali, J. and Kawamoto, H., 2010. Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM_3B42 over Iran, Advances in Geosciences, v. 25, p. 119-125.‏ https://doi.org/10.5194/adgeo-25-119-2010, 2010
Kouzegaran, S. and Mousavi Baygi, M., 2015. Investigation of Meteorological Extreme Events in the North-East of Iran, Water and Soil, v. 29(3), p. 750-764. Doi: 10.22067/jsw.v0i0.40845 (In Persian).
Li, X., Zhou, W. and Chen, Y.D., 2016. Detecting the origins of moisture over southeast China: Seasonal variation and heavy rainfall, Advances in Atmospheric Sciences, v. 33, p. 319-329.‏ https://doi.org/10.1007/s00376-015-4197-5
Mofidi, A., Zarrin, A. and Janbaz Ghobadi, G., 2008. Determining the synoptic pattern of autumn heavy and extreme precipitations on the southern coast of the Caspian Sea, Earth Space Phys, v. 33(30), p. 131-154.‏ https://dorl.net/dor/20.1001.1.2538371.1386.33.3.10.7 (In Persian).
Mohammed, A.J., Hashim, A.A., Kadhum, J.H. and Mohammed, S.K., 2023. The Back Trajectory Study for Selected Extreme Rainfall Events over Iraq, In IOP Conference Series: Earth and Environmental Science, v. 1223(1), p. 012006. IOP Publishing.‏ DOI 10.1088/1755-1315/1223/1/012006
Pourkarimian, A., Soyuf Jahromi, M. and Malakooti, H., 2021. Tracking of the Oceanic Water Content Resources of the Precipitation In Dayyer Port (March 2017), Journal of Marine Science and Technology, v. 20(3), p. 31-49.
Rapolaki, R.S., Blamey, R.C., Hermes, J.C. and Reason, C.J.C., 2020. Moisture sources associated with heavy rainfall over the Limpopo River Basin, southern Africa, Climate Dynamics, v. 55(5), p. 1473-1487.‏
Rashedi, S., jahanbakhsh, S., Khorshiddoust, A. and Mohammadi, G.H., 2023. Introduction and study of Caspian Clouds (Case study from July 20 to 31, 2013), Journal of Geography and Planning, v. 27(84), p. 71-79. Doi: 10.22034/gp.2023.14431 (In Persian).
Salehi, H., Saneinejad, H. and Mousavi Baygi, M., 2014. Analysis of Instability Indices during severe weathers, in Mashhad Metropolis, Journal of Geography and Environmental Hazards, v. 3(1), p. 113-123. Doi: 10.22067/geo.v3i1.27409 (In Persian).
Saligeh, M., naserzadeh, M. and ghaffari, A., 2018. Investigation of spring convection loads of northwest of Iran using unstable indices (case study of Tabriz station), Journal of Geography and Planning, v. 22(64), p. 129-147. https://geoplanning.tabrizu.ac.ir/article_8107.html?lang=en (In Persian).
Shafiee, S., Mozafari, G.A. and Ghaderi, F., 2017. Thermodynamic analysis of extreme precipitation for the West of Iran and presenting instability model for this area, Nivar, v. 41(98-99), p. 49-60. Doi: 10.30467/nivar.2017.51898 (In Persian).
Shamsipoor, A.S., Kaki, S., Jafari, A. and Jasemi, S.M., 2018. Synoptic and Thermodynamic Analysis of Heavy rainfall in the west and southwest of Iran. (Case Study: 12-15 April 2016), Journal of Geography and Planning, v. 22(64), p. 149-167.
Shi, K., Lang, Q., Huang, Y., Zhao, J., Wang, H., Chen, G. and Wang, P., 2024. Analysis of the water‐vapor sources in rainstorm processes in Tianjin city based on the trajectory method, Atmospheric Science Letters, v. 25(2), e1196.‏ https://doi.org/10.1002/asl.1196
Sioutas, M.V. and Flocas, H.A., 2003. Hailstorms in Northern Greece: synoptic patterns and thermodynamic environment, Theoretical and Applied Climatology, v. 75(3), p. 189-202. http://dx.doi.org/10.1007/s00704-003-0734-8
Sotodeh, F. and Alijani, B., 2015. The relationship between spatial distribution of heavy precipitation and pressure patterns in Guilan province, Journal of Spatial Analysis Environmental Hazards, v. 2(1), p. 63-73.‏ http://dx.doi.org/10.18869/acadpub.jsaeh.2.1.63 (In Persian).
Tavousi, T. and Rostami Jalilian, S., 2023. Analysis of Thunderstorms Using Atmospheric Instability Indices in Kermanshah, Geographic Space, v. 23(83), p. 71-96.‏ http://geographical-space.iau-ahar.ac.ir/article-1-3357-en.html
Zhang, F., Li, G. and Yue, J., 2019. The moisture sources and transport processes for a sudden rainstorm associated with double low-level jets in the northeast Sichuan Basin of China, Atmosphere, v. 10(3), 160.‏ https://doi.org/10.3390/atmos10030160
Zhang, S., Liu, B., Ren, G., Zhou, T., Jiang, C., Li, S. and Su, B., 2021. Moisture sources and paths associated with warm-season precipitation over the Sichuan Basin in southwestern China: climatology and interannual variability, Journal of Hydrology, v. 603, 127019.‏ https://doi.org/10.1016/j.jhydrol.2021.127019