کمی‌سازی عدم قطعیت سهم منابع رسوب تپه‌های ماسه‌ای با استفاده از روش انگشت‌نگاری مونت‌کارلو (مطالعه موردی: تپه‌های ماسه‌ای جازموریان، جنوب استان کرمان)

نوع مقاله : علمی -پژوهشی

نویسندگان

1 دانشگاه هرمزگان، بندرعباس، ایران.

2 سازمان انرژی اتمی، تهران، ایران.

3 استاد گروه جغرافیای طبیعی، دانشگاه اکستر، اکستر، انگلستان. Professor of Physical Geography, University of Exeter, Exeter, UK.

4 دانشگاه گنبد کاووس، گنبد، ایران

10.29252/esrj.9.1.14

چکیده

امروزه استفاده از تکنیک انگشت­نگاری رسوب در تعیین سهم منابع رسوبات در حال افزایش می­باشد، بنابراین توجه به آنالیز عدم قطعیت در طی فرآیند مدل­سازی ضروری می­باشد. در این تحقیق به منظور بررسی عدم قطعیت سهم منابع رسوبات تپه­های ماسه­ای در منطقه جازموریان، استان کرمان از تکنیک انگشت­نگاری مونت­کارلو مورد استفاده قرار گرفت. بدین منظور، پس از انتخاب ترکیب بهینه از ردیاب­ها توسط یک فرآیند آماری دو مرحله­ای شامل آزمون­های کروسکال والیس و آنالیز تابع تشخیص، مدل ترکیبی Collins با 10000 بار تکرار در MATLAB اجرا گردید و محدوده­ی عدم قطعیت مربوط به سهم منابع رسوبات تپه­های ماسه­ای در سطح اطمینان 95 درصد (صدک­های 5/2 و 5/97 درصد) محاسبه گردید. بر طبق نتایج، از بین ده ردیاب اندازه­گیری شده، 4 ردیاب شامل Cr، Ni، Li و Co به­عنوان ترکیب بهینه انتخاب شدند و در نهایت به­عنوان پارامتر ورودی به فرآیند مدل­سازی در نظر گرفته شدند. عدم قطعیت کامل (%100-0) در سهم منابع به­ویژه در Qs و Qal و برای برخی نمونه­های رسوب دیگر، منبع Qt محاسبه گردید و دو منبع اول در بیشتر نمونه­های رسوب بیشترین عدم قطعیت نشان دادند و هم­چنین به علت وزش بادهای چند جهته در منطقه، منابع تامین­کننده رسوب برای نمونه­های مختلف تپه­های ماسه­ای نیز متغیر می­­باشد. با توجه به کارایی بالای این تکنیک، استفاد از این روش در مناطقی با تپه­های ماسه­ای فعال به منظور شناسایی منابع آنها، کمی کردن سهم منابع و بررسی عدم قطعیت آنها توصیه می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Determining uncertainty associate to source contributions of sand dune sediments using a Monte Carlo fingerprinting technique

نویسندگان [English]

  • Mojtaba Dolat Kordestani 1
  • Hamid Gholami 1
  • Javad Ahamdi 2
  • Desmond Walling 3
  • Abolhassan Fathabadi 4
1 Department of Natural Resources Engineering, University of Hormozgan, Bandar-Abbas, Hormozgan, Iran.
2 Professor of Nuclear Atomic Research Institute, Iran Atomic Energy Organization, Tehran, Iran.
3 Professor of Physical Geography, University of Exeter, Exeter, UK.
4 Department of Rangeland and Watershed Management Engineering, University of Gonbad, Gonbad, Iran.
چکیده [English]

Todays, sediment fingerprinting have been increasingly used to determine source contributions of sediments, but there is a need to continue refining procedure especially with respect to uncertainty analysis during modeling. In this research, we applied a Monte Carlo fingerprinting framework to exploring of uncertainty associate to source contributions of sand dune sediments in the Jazmurian region, Kerman province. In order to, after selecting optimum composite fingerprints using a two-stage statistical procedure including Kruskal-Wallis H test and discriminant function analysis, Collins mixing model was solved 10000 times in the MATLAB with 95% confidence levels (percentiles 2.5% and 97.5%). Among of 10 tracers, four tracers including Cr, Ni, Li and Co were selected as optimum composite fingerprints and then they entered as modeling procedure. Full uncertainty (0-100%) calculated for some sources especially Qs and Qal, and also for some sediment samples, Qt recognized as main source. Variability on the source for sand dune sediment samples is due to winds with multiple directions. The effectiveness of this technique to sand dune sediment fingerprinting suggests that they will be useful in other desert regions with active dune fields for recognition of their sources, quantifying source contributions and studying uncertainty of source contributions.

کلیدواژه‌ها [English]

  • Fingerprinting-Uncertainty- Monte Carlo
  • -Source Contribution
  • -Jazmurian
  1. -غلامی، ح.، فیض‌نیا، س.، احمدی، ج.، احمدی، ح.، نظری سامانی، ع.ا. و نوحه‌گر، ا.، 1393. تعیین سهم رخساره‌های ژئومورفولوژی در تولید رسوبات بادی با بهره‌گیری از روش ردیابی رسوبات (بررسی موردی: تپه‌های ماسه‌ای اشکذر)، مدیریت بیابان، شماره 4، پاییز و زمستان 1393، ص 31-42.
  2. -غلامی، ح.، طاهری مقدم، ا.، نجفی قیری، م. و مهدوی نجف‌آبادی، ر.، 1394. تعیین سهم کاربری‌های اراضی در تولید رسوب تپه‌های ماسه‌ای با استفاده از روش انگشت‌نگاری (منطقه مورد مطالعه: ارگ نگار بردسیر، استان کرمان)، پژوهش-های فرسایش محیطی، شماره 5 (2)، ص 46-54.
  3. -Brosinsky, A., Foerster, S., Segl, K., Lopez-Tarazan, J.A., Pique, G. and Bronstert, A., 2014. Spectral fingerprinting: characterizing suspended sediment sources by the use of VNIR-SWIR spectral information, Journal of Soils and Sediments, doi:10.1007/s11368-014-092-z.
  4. -Brown, A.G., 1985. The potential use of pollen in the identification of suspended sediments sources, Earth Surface Processes and Landforms, v. 10, p. 27-32.
  5. -Caitcheon, G.G., 1993. Sediment source tracing using environmental magnetism: a new approach with examples from Australia, Hydrology Processes, v. 7, p. 349-358.
  6. -Chen, F., Fang, N. and Shi, Z., 2016. Using biomarkers as fingerprint properties to identify sediment sources in a small catchment, Science of the Total Environment, v. 557-558, p. 123–133, doi:10.1016/j.scitotenv, 2016.03.028.
  7. -Collins, A.L., Walling, D.E. and Leeks, G.J.L., 1997. Fingerprinting the origin of fluvial suspended sediment in larger river basins: combining assessment of spatial provenance and source type, Geografiska Annaler, v. 79, p. 239-254.
  8. -Collins, A.L., Walling, D.E., Stroud, R.W., Robson, M. and Peet, L.M., 2010. Assessing damaged road verges as a suspended sediment source in the Hampshire Avon catchment, southern United Kingdom, Hydrological Processes, v. 24, p.1106-1122, doi: 10.1002/ hyp.7573.
  9. -Collins, A.L., Williams, L.J., Zhang, Y.S., Marius, M., Dungait, J.A.J., Smallman, D.J. and Naden, P.S., 2014. Sources of sediment ‐bound organic matter infiltrating spawning gravels during the incubation and emergenc e life stages of salmonids, Agriculture, Ecosystems and Environment, v. 196, p. 76-93, doi.org/10.1016/ j.agree. 2014.06.018.
  10. -Collins, A.L., Zhang, Y.S., Duethmann, D., Walling, D.E. and Black, K.S., 2013. Using a novel tracing-tracking framework to source fine-grained sediment loss to watercourses at sub-catchment scale, Hydrological Processes, v. 27 (6), p. 959-974, doi:10.1002/ hyp. 9652.
  11. -Collins, A.L., Zhang, Y., Walling, D.E., Grenfell, S.E., Smith, P., Grischeff, J. and Brogden, D., 2012. Quantifying fine-grained sediment sources in the River Axe Catchment, southwest England: Application of a Monte-Carlo numerical modelling framework incorporating local and genetic algorithm optimisation, Hydrological Processes, v. 26 (13), p. 1962–1983, doi:10.1002/hyp.8283.
  12. -Cooper, R.J., Krueger, T., Hiscock, K.M. and Rawlins, B.G., 2014. Sensitivity of fluvial sediment source apportionment to mixing model assumptions: A Bayesian model comparison, Water Resourecs Reaserch, v. 50, p. 9031-9047. doi:10.1002/2014WR016194.
  13. -Cooper, R.J., Krueger, T., Hiscock, K.M. and Rawlins, B.G., 2015. High-temporal resolution fluvial sediment source fingerprinting with uncertainty: A Bayesian approach, Earth Surface Processes and Landforms, v. 40(1), p. 78-92, doi:10.1002/esp, 3621.
  14. -Douglas, G.B., Gray, C.M., Hart, B.T. and Beckett, R., 1995. A Strontium isotopic investigation of the origin of suspended partculate matter (SPM) in the Murray-Darling river system, Australia, Chemical Geology, v. 59, p. 3799-3815.
  15. -Dutton, C., Anisfeld, S.C. and Ernstberger, H., 2013. A novel sediment fingerprinting method using filtration: Application to the Mara River, East Africa, Journal of Soils and Sediments, v. 13(10), p. 1708-1723, doi:10.1007/s11368-013-0725-z.
  16. -East, A.E., Clift, P.D., Carter, A., Alizai, A. and VanLaningham, S., 2015. Fluvial-eolian interactions in sediment routing and sedimentary signal buffering: an example from the Indus Basin and Thar Desert, J. Sediment, Res, v. 85, 715e72 8.
  17. -Foster, I.D.L. and Walling, D.E., 1994. Using reservoir deposits to reconstruct changing sediment yields and sources in catchments of Old Mill Reservoir, South Devon, UK, over the past 50 years, Hydrological Sciences Journal, v. 39, p. 347-368.
  18. -Garzanti, E., Ando, S., Vezzoli, G., Lustrino, M., Boni, M. and Vermeesch, P., 2012. Petrology of the Namib sand sea: Long-distance transport and compositional variability in the wind-displaced Orange Delta, Earth Sci, Rev, v. 112, 173e18 9.
  19. -Gholami, H., Middleton, N., Nzari Samani, A. and Wasson, R., 2017a. Determining contribution of sand dune potential sources using radionuclides, trace and major elements in central Iran, Arab J Geosci, v. 10, p. 1-9, doi, 10.1007/s12517-017-2917-0.
  20. -Gholami, H., Telfer, M.W., Blake, W.H. and Fathabadi, A., 2017. Aeolian sediment fingerprinting using a Bayesian mixing model, Earth Surf, Process, Landforms, v. 42, p. 2365-2376. doi: 10.1002/esp.4189.
  21. -Grimshaw, D.L. and Lewin, J., 1980. Source identification for suspended sediment, Journal of Hydrology, v. 47, p. 151-162.
  22. -Hasholt, B., 1988. On identification of sources of sediment transport in small basins with special reference to particulate phosphorus, In: Boards, M.P. and Walling, D.E., (Eds), Sediment budgets, IAHS Publ, No, 174, IAHS Press, Wallingford, p. 241-250.
  23. -Horowitz, A.J., 2017. A question of uncertainty, Hydrologcal Processes, 1-2. doi. 10, 1002/hyp.111 42.
  24. -Hughes, A.O., Olley, J.M., Croke, J.C. and McKergow, L.A., 2009. Sediment source changes over the last 250 years in a dry-tropical catchment, central Queensland, Australia, Geomorphology, v. 104, p. 262-275, doi.org/10.1016/ j.geomorph.2008.09.003.
  25. -Klages, M.G. and Hsieh, Y.P., 1975. Suspended solids transported by the Gallatin river of southern Montana: II using mineralogy for inferring sources, Journal of Environmental Quality,v. 4, p. 68-73.
  26. -Lamba, J., Karthikeyan, K.G. and Thompson, A.M., 2015. Apportionment of suspended sediment sources in an agricultural watershed using sediment fingerprinting, Geoderma, v. 239-240, p. 25-33, doi:10.1016/j.geoderma.2014.09.024.
  27. -LeGall, M., Evrard, O., Foucher, A., Laceby, J.P., Salvador-Blanes, S., Thill, O., Dapoigny, A., Lefèvre, I., Cerdan, O. and Ayrault, S., 2016. Quantifying sediment sources in a lowland agricultural catchment pond using 137 Cs activities and radiogenic 87Sr/86Sr ratios, Science of the Total Environment, v. 566-567, p. 968-980, doi: j.scitotenv, 2016.05.093.
  28. -Liu, B., Niu, Q., Qu, J. and Zu, R., 2016a. Quantifying the provenance of aeolian sediments using multiple composite fingerprints, Aeolian Research, v. 22, p. 117-122, dx.doi.org/ 10.1016/j.aeolia.2016.08.002.
  29. -Lorenz, R.D. and Zimbelman, J.R., 2014. Dune Worlds: How Windblown Sand Shapes
  30. Planetary Landscapes, Springer, 308 p.
  31. -Massoudieh, A., Gellis, A., Banks, W.S. and Wieczorek, M.E., 2013. Suspended sediment source apportionment in Chesapeake Bay Watershed using Bayesian chemical mass balance receptor modeling, Hydrological Processes, v. 27(24), p. 3363-3374, doi:10.1002/hyp.9429.
  32. -Morton, A.C., 1991. Geochemical studies of detrital heavy minerals and their application to provenance research, Geological Society Special Publication, v. 57, p. 31-45.
  33. -Motha, J.A., Wallbrink, P.J., Hairsine, P.B. and Grayson, R.B., 2003. Determining the sources of suspended sediment in a forested catchment in southeastern Australia, Water Resources,v.39(3),p.1-14, doi:10.1029/ 2001wr000794.
  34. -Muhs, D.R., 2017. Evaluation of simple geochemical indicators of Aeolian sand provenance: Late Quaternary dune fields of North America revisited, Quaternary Science Reviews, v. 171, p. 260-296, doi.org/10.1016/j.quascirev.2017.07.007.
  35. -Muhs, D.R., Reynolds, R., Been, J. and Skipp, G., 2003. Eolian sand transport pathways in the southwestern United States: importance of the Colorado River and local sources, Quat, Int, 104 p.
  36. -Nosrati, K., Govers, G., Ahmadi, H., Sharifi, F., Amoozegar, M.A., Merckx, R. and Vanmaercke, M., 2011. An exploratory study on the use of enzyme activities as sediment tracers: biochemical fingerprints, International Journal of Sediment Research, v. 26, p. 136-151.
  37. -Nosrati, K., Govers, G., Semmens, B.X. and Ward, E.J., 2014. A mixing model to incorporate uncertainty in sediment fingerprinting, Geoderma, v. 217-218, p. 173-180, doi:10.1016/j, geoderma, 2013.12.002.
  38. -Pulley, S., Foster, I. and Antunes, P., 2015. The uncertainties associated with sediment fingerprinting suspended and recently deposited fluvial sediment in the Nene River Basin, Geomorphology, v. 228, p. 303-319,doi:10.1016/j.geomorph.2014.09.016.
  39. -Scheidt, S., Lancaster, N. and Ramsey, M., 2011. Eolian dynamics and sediment mixing in the Gran Desierto, Mexico, determined from thermal infrared spectroscopy and remote-sensing data, Geological Society of America Bulletin, v. 123, 1628-1644.
  40. -Smith, H.G., Blake, W.H. and Owens, P.N., 2013. Discriminating fine sediment sources and the application of sediment tracers in burned catchments: A review, Hydrological Processes, v. 27 (6), p. 943-958, doi:10.1002/hyp.9537.
  41. -Stone, M., Collins, A.L., Silins, U., Emelko, M.B. and Zhang, Y.S., 2014. The use of composite fingerprints to quantify sediment sources in a wildfire impacted landscape, Alberta, Canada, Science of the Total Environment, v. 473-474, p. 642–650,. doi:10.1016/ j, scitotenv.2013.12.052.
  42. -Stone, M. and Saunderson, H., 1992. Particle size characteristics of suspended sediments in southern Ontario rivers tributary to the Great Lakes, Geological Society Special Publication, v. 57, p. 31-45.
  43. -Voli, M.T., Wegmann, K.W., Bohnenstiehl, D.R., Leithold, E., Osburn, C.L. and Polyakov, V., 2013. Fingerprinting the sources of suspended sediment delivery to a large municipal drinking water reservoir: Falls Lake, Neuse River, North Carolina, USA, Journal of Soils and Sediments, v. 13(10), p. 1692-1707, doi:10.1007/ s11368-013-0758-3.
  44. -Walden, J., Slattery, M.C. and Burt, T.P., 1997. Use of mineral magnetic measurements to fingerprints suspended sediment sources: approaches and techniques for data analysis, Journal of Hydrology, v. 202, p. 353-372.
  45. -Walling, D.E., 2005. Tracing suspended sediment sources in catchments and river systems, Science of the Total Environment, v. 344 (1-3), p. 159–184, doi:10.1016/ j.scitotenv.2005.02.011.
  46. -Walling, D.E., Owens, P.N. and Leeks, G.J.L., 1999. Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK, Hydrological Processes, v. 13, p. 955-975. doi. 10, 1002/(SICI)1099-1085(199905)13:7< 955:: AID-HYP784> 3.0.CO; 2-G.
  47. -Walling, D.E. and Woodward, J.C., 1995. Tracing sources of suspended sediment in river basins: a case study of river Culm, Devon, UK, Marin and Freshwater Research, v. 46, p. 327-336.
  48. -Warren, A., Dunes, J. And Sons, Ltd., 2013. Chichester, 219 pp. Wilkinson, S.N., Hancock, G.J., Bartley, R., Hawdon, A.A., and Keen, R.J. 2013. Using sediment tracing to assess processes and spatial patterns of erosion in grazed rangelands, Burdekin River Basin, Australia, Agriculture, Ecosystems and Environment, v. 180, p. 90-102. doi:10.1016/j.agee.2012.02.002.
  49. -Wilson, I.G., 1973. Ergs. Sediment Geology, v. 10, 77-106.
  50. -Zhang, X.C. and Liu, B.L., 2016. Using multiple composite fingerprints to quantify fine sediment source contributions: A new direction, Geoderma, v. 268, p. 108-118. Dx, doi.org/10.1016/j.geoderma.2016.01.03
  51. -Zhou, H., Chang, W. and Zhang, L., 2016. Sediment sources in a small agricultural catchment: A composite fingerprinting approach based on the selection of potential sources, Geomorphology, v. 266, p. 11-19. dx.doi,org/10.1016/j.geomorph.2016.05.007.