بررسی سنگ شناسی، کانه زایی، زمین شیمی و زمین دماسنجی در نشانه مس جُوزبن، جنوب شرق دامغان

نوع مقاله : علمی -پژوهشی

نویسندگان

1 کارشناس ارشد زمین‌شناسی اقتصادی، دانشکده علوم زمین، دانشگاه دامغان

2 استادیار گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه دامغان

10.29252/esrj.9.4.1

چکیده

نشانه رگه­ای مس جُوزبن با ابعادی به پهنای 5/1 متر و طول حدوداً 100 متر در 120 کیلومتری جنوب – جنوب شرق دامغان و در بخشی از کمربند آتشفشانی ترود – چاه شیرین واقع شده است. این کمربند دارای سنگ­های آتشفشانی کالک آلکالن می باشد. کانه­زایی های این کمربند تحت تاثیر دو گسل اصلی، گسل ترود در جنوب منطقه و گسل انجیلو در شمال منطقه، قرار دارد. سنگ­های آتشفشانی و نفوذی منطقه مورد مطالعه از نوع کوارتز دیوریت، کوارتز مونزونیت، داسیت، آندزیت می­باشند. بافت غالب سنگ­های این منطقه نیز، پورفیری، گرانولار و پویکیلیتیک می­باشد. دگرسانی های مشاهده شده شامل سریسیتی شدن، سیلیسی شدن، کلسیتی شدن و پروپیلیتیک می­باشد. کانه­زایی منطقه در قالب کانی­های سولفیدی از جمله پیریت، کالکوپیریت، گالن و بورنیت و نیز کانی اکسیدی هماتیت رخ داده است. کانی­های ثانویه از قبیل کولیت، کالکوسیت، مالاکیت و هیدروکسید­های آهن قابل مشاهده است. براساس مطالعات زمین شیمیایی، می­توان گفت که سنگ میزبان منطقه از یک ماگمای کالک آلکالن اشباع از آلومین منشاء گرفته و در ارتباط با یک کمان آتشفشانی می­باشد. با توجه به مطالعات سیالات درگیر انجام شده بر روی کانی کوارتز، مشخص گردید که دامنه دمای همگن شدگی بین 130 تا 190 درجه سانتی­گراد و شوری محلول در محدوده ۴ تا ۵/۱۴ درصد وزنی معادل NaCl تغییر می­کند. همچنین دماسنجی انجام شده بر مبنای ریخت­شناسی بلورهای کانی پیریت، دمای حدود C°250 را برای زون دگرسانی، روشن می­سازد. این داده­ها حاکی از آن است که کانی سازی احتمالا در عمقی حدود 100 متر زیر سطح و در شرایط سطح گرمایی و از نوع کانسارهای آهن – مس- طلا صورت گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Petrogenesis, ore geology, geochemistry and geothermometry of the Jouzbon copper index, south-east Damghan

نویسندگان [English]

  • Mohammad Mohebbiyan 1
  • Ali akbar Hasannezhad 2
  • Hadi Shafaeii moghadam 2
  • Nader Taghipour 2
1 M.Sc. in Economic Geology, School of Earth Sciences, Damghan University
2 Assistant Professor, Department of Geology, School of Earth Sciences, Damghan University
چکیده [English]

The Jouzbon Cu index (~1.5 wide and 100 meters’ length), at the south-southeastern parts of Damghan city belongs to the Torud–Chah Shirin volcanic belt. This belt contains calc-alkaline volcanic rocks. The Cu mineralization has occurred between two major faults, the Torud Fault at south and the Anjilu Fault at north. The volcanic and intrusive rocks in this belt include quartz-diorites, quartz-monzonites, dacites and andesites. These rocks show porphyritic, granular and poikilitic textures. The prevailing alteration phases of this region are characterized by sericitization, silicification, calcification, and propylitic alteration. The main mineralization phases of the Jouzbon region are dominanted by occurrence of the sulfides and oxide minerals including pyrite, chalcopyrite, galena, bornite and hematite. Secondary minerals such as covellite , chalcocite , malachite and iron hydroxide are also common. Geochemical observations show that the host rocks are related to a alumina-saturated calc-alkaline magma with volcanic arc (VAG) signature. Fluid inclusion studies on quartz testified a narrow homogenization temperature but a wide salinity, ranging from 130 to 190 ° C and 4 to 14.5 wt%  NaCl equivqlent respectively. Geothermometry assay, based on morphology of pyrite crystals, yielded a temperature in the range of ~250°C for the alteration zone. The compiled data testified that mineralization probably has occurred at the depth of ~ 100 meters below the surface during the epithermal conditions, similar to the IOCG-type deposits.

کلیدواژه‌ها [English]

  • Jouzbon
  • Geochemistry
  • Fluid inclusion
  • Epithermal
  • Morphology of pyrit
  1. -آقانباتی، س.ع.، 1382. زمین‌شناسی ایران، سازمان زمین‌شناسی و اکتشافات معدنی ایران، تهران، 708 ص.
  2. -برنا، ب. و عشق آبادی، م.، 1376. گزارش ارزیابی و اکتشافی رخدادها و اندیس‌های سرب وروی استان سمنان، اداره کل معادن و فلزات استان سمنان، 226 ص.
  3. -قربانی، ق.، 1384. پترولوژی سنگ‌های ماگمایی جنوب دامغان، رساله دکترا، دانشگاه شهید بهشتی، 350 ص.
  4. -کریم پور، م.ح.، 1384. مقایسه کانسار Cu-Ag-Au قلعه زری با دیگر کانسارهای نوعIron oxides Cu-Au (IOCG) و ارائه رده‌بندی جدید، مجله بلورشناسی و کانی شناسی ایران، شماره 1، ص 167-184.
  5. -مهرابی، ب. و قاسمی سیانی، م.، 1389. کانی-شناسی زمین‌شناسی اقتصادی رخداد پلی متال چشمه حافظ، استان سمنان، ایران، مجله زمین-شناسی اقتصادی، شماره 1، جلد 2، ص 1-20.
  6. -هوشمندزاده، ع.، علوی نائینی، م. و حقی پور، ع.، 1357. تحول پدیده‌های زمین‌شناسی ترود(پرکامبرین تا عهدحاضر)، انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور.
  7. -Alavi, M., 1991. Tectonic map of the middle East, Geological survey of Iran.
  8. -Aldanmas, E., Koprubas, N., Gurer, O.F., kaymakc, N. and Gourgaud, V.A., 2006. geochemical on the Cenozoic,OIB-Type alkaline volcanic rock of NW Turkey: implications for mantle sources and melting processes, Lithos, v.86, p. 50-76.
  9. -Alonso-Azcarate, J., Rodas, M., Fernandez, L., Bottrell, S.H., Mas, J.R. and Lopez-andres, S., 2001, Causes of variation in crystal morphology in metamorphogenic pyrite deposit of the Cameros Basin (N Spain), Geological Journal, v. 36, p. 159-170.
  10. -Berberian, M. and King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran, Canadian Journal of Earth Sciences, v.18, p. 210-265.
  11. -Camprubi, A., Chomiak, B.A., Canals, A. and Norman, D.I., 2006. Fluid sources for the la Guitarra epithermal deposit (temascaltepec district, Mexico): Volatile and helium isotope analyses in fluid inclusions, Chemical Geology, v. 231, p. 252-284.
  12. -Guilbert, J. and Park, C.F., 1997. The geology of ore deposit, W. H. Freeman and Company Pub.New York, 985 p.
  13. -Harker, A., 1909. The natural history of igneous rocks, Methuen & Co.London, 458 p.
  14. -Hass, J.l., 1971. The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure, Economic Geology, v. 66, p. 940-946.
  15. -Ineson, P.R., 1989. Introduction to Practical Ore Microscopy, Longman, England, 181 P.
  16. -Irvine, T.N. and Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks, Canadian Journal of Earth Sciences, v.8, p. 523-548.
  17. -kharbish, S., 2010. Geochemistry and magmatic setting of Wadi El-Markh island-arc gabbro-diorite, Centeral Eastern Desert Egypt, Cheie der Erde-Geochemistry, v.70, p. 257-266.
  18. -LeBas, M.j. and Le Maitre, R.W., 1986. Streckeisen A., Zanettin, B., "A chemical classification of volcanic rocks on the total alkali-silica diagram", Journal of Petrology, v. 27, p. 745-750.
  19. -Middlemost, E.A.K., 1987. Magmas and Magmatic Rocks: An introduction to igneous Rocks petrology", Harlow, U.K, Longman, 266 p.
  20. -Maniar, P.D. and Picooli, P.M., 1985. Tectonic discrimination of granitoids, Bulletin of Geological Society of America, v. 101, p. 635-643.
  21. -Monteiro, L.V.S., Xavier, R.P., Hitzman, M.W., Juliani, C., Souza Filho, C.R. and Carvalho, E.R., 2008. Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide–copper–gold deposit, Carajas Mineral Province, Brazil, Ore Geology Reviews, v. 34, p. 317-336.
  22. -Murowchick, J.B. and Barnes, H.L., 1987. Effects of temperature and degree of supersaturation on pyrite morphology, American Mineralogist, v. 72, p. 1241-1250.
  23. -Nakamura, N., 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites, Geochimica et Cosmochimica Acta, v. 38, p.757-775.
  24. -Pearce, J.A., Harrise, B.W. and Ttindle, A.G., 1984. Trace of iseriminant diagrams for the tectonic interpretation of granitic rocks, Journal of petrology, v. 25, p. 956-983.
  25. -Rankin, A.H., 1989. Fluid inclusions, Geology today, v. 5, p. 21-24.
  26. -Roedder, E., 1984. Fluid Inclusions, Reviews in Mineralogy 12, Mineralogical Society of America, 646 p.
  27. -Shepherd, T.j., Rankin, A.H. and Alderton, D.H.M., 1983. A practical guides to fluid inclusion studies, Blackie LTD, 239 p.
  28. -Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes, In: Magmatism in the ocean basins, Saunders, A.D. and Norry, M.J. (Editors), Geological Society of London, London, v. 42, p. 313-345.
  29. -Van den Kerkhoff, A.M. and Hein, U.F., 2001. Fluid inclusion petrography, Lithos, v. 55, p. 27-47.
  30. -Williams, P.J., Barton, M.D., Johnson, D.A., Fontbote, L., De haller, A., Mark, G., Oliver, N.H.S. and Marschik, R., 2005. Iron Oxide Copper-Gold Deposits: Geology, Space-Time Distribution, and Possible Modes of Origin, Economic Geology 100th Anniversary Volume, p. 371-405.
  31. -Wilson, M., 1989. Igneous petrogenesis, Unwin Hyman, London, 466 p.
  32. -Wilkinson, J.J., 2001. Fluid Inclusion in hydrothermal ore deposits, Lithos, v. 55, p. 229-272.