سنجش سطوح و اولویت‌بندی آسیب‌پذیری سکونتگاه‌های روستایی در برابر زلزله با استفاده از منطق فازی در GIS (مطالعه موردی: استان فارس)

نوع مقاله : علمی -پژوهشی

نویسندگان

1 دانشیار مرکز مطالعات سنجش از دور و GIS، دانشکده علوم زمین، دانشگاه شهید بهشتی

2 استاد مرکز مطالعات سنجش از دور و GIS، دانشکده علوم زمین، دانشگاه شهید بهشتی

3 مربی مرکز مطالعات سنجش از دور و GIS، دانشکده علوم زمین، دانشگاه شهید بهشتی

4 کارشناس ارشد مرکز مطالعات سنجش از دور و GIS، دانشکده علوم زمین، دانشگاه شهید بهشتی و رئیس GIS ستاد پلیس راهنمایی و رانندگی

10.29252/esrj.9.4.181

چکیده

از مهم­­ترین بلایای طبیعی که نقش مهمی در آسیب­پذیری و تخریب سکونتگاه­های روستایی ایفا می­نماید، زلزله می­باشد. آسیب­پذیری دارای مفهومی پیچیده است به طوری که عوامل و متغیرهای مختلفی در آن دخالت دارد و استفاده از روش­های نوین موجب بهبود فرآیند سنجش سطوح آسیب­پذیری می­شود. هدف از ارائه پژوهش حاضر، سنجش سطوح و اولویت­بندی آسیب­پذیری سکونتگاه­های روستایی با به کارگیری عملگرهای مبتنی بر منطق فازی می­باشد. استان فارس که دارای گسل­های اصلی و فرعی متعددی بوده و در طول سالیان گذشته زلزله­های متعددی با قدرت تخریب بالا در آن به ­وقوع پیوسته و هم­چنین، سکونتگاه­های روستایی آن دارای تنوع آسیب­پذیری طبیعی و انسانی می­باشد، به عنوان منطقه­ی مطالعاتی انتخاب شده است. سکونتگاه­های روستایی از محیط­هایی به شمار می­رود که به دلیل ویژگی­های فیزیکی آن در مقایسه با سکونتگاه­های شهری در معرض آسیب­پذیری بیشتری می­باشد. در این پژوهش، جهت سنجش سطوح و اولویت­بندی آسیب­پذیری از عملگرهای فازی که شامل تلفیق چندمعیاره اهمیت معیارها و وزن­ رتبه­ها بوده و دو ویژگی مهم در نظرگرفتن متغیرهای کیفی (زبانی) و توجه به گروه­های مختلف ذینفع را نیز داشته و هم­چنین، به نتایج بهتری منجر شده، استفاده گردید. لذا با به کارگیری و تلفیق متغیرها و سناریوهای مختلف، مناطق با درجات بالای ریسک مشخص شد. سپس، سکونتگاه­های روستایی در معرض ریسک حاصل از سناریوی نسبتا بدبینانه آسیب­پذیری طبیعی انتخاب گردید. در نهایت، آسیب­پذیری انسانی این سکونتگاه­ها با به کارگیری سناریوی متعادل اولویت­بندی شد. نتایج حاصل در تمامی سناریوها نشان داد که بخش­های جنوب و غرب منطقه که دارای مقادیر بالای بیشینه جنبش افقی زمین (Peak Horizontal Acceleration)، سازندهای زمین­شناسی جدید و نزدیکی به گسل­های فعال زمین­شناسی بوده به عنوان مناطق با درجات بالای ریسک آسیب­پذیری طبیعی شناسایی شده و همواره زلزله­های متعدد با قدرت تخریب بالا در آن به وقوع می­پیوندد اما از منظر متغیرهای آسیب­پذیری انسانی مورد استفاده در این پژوهش در حد متوسط می­باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Vulnerability assess of the levels and prioritization of rural settlements against earthquakes using Fuzzy Logic in GIS (case study: Fars Province)

نویسندگان [English]

  • ََAlireza shakiba 1
  • Ali akbar matkan 2
  • Babak mirbagheri 3
  • Yaghub seif 4
1 Associated Professor, Center for Remote Sensing Studies and GIS, Faculty of Earth Sciences, ShahidBeheshti University
2 Professor, Center for Remote Sensing Studies and GIS, Faculty of Earth Sciences, Shahid Beheshti University
3 Coach, Center for Remote Sensing Studies and GIS, Faculty of Earth Sciences, Shahid Beheshti University
4 MS.c in Remote Sensing and GIS, Center for Remote Sensing Studies and GIS, Faculty of Earth Sciences, Shahid Beheshti University
چکیده [English]

One of the natural disasters that plays a major role in the vulnerability and destruction of rural settlements is earthquake. Vulnerability has a complex concept so that involves various factors and variables and using modern methods could improve vulnerability assess of the levels. The objective of this study is to vulnerability assess the levels and prioritization of rural settlements with the use of operators based on Fuzzy Logic. The Fars province was selected as a case study because of exist many major and minor faults, during the years occured huge earthquakes and theirs rural settlements have a variety of natural and human vulnerability. Because of the physical characteristics, rural areas exposured to high vulnerability is compared with urban areas. In this study, for vulnerability assess the levels and prioritization was used fuzzy operators that including multi criteria aggregation criterion importance and orders weight and two important properties consider to qualitative (linguistic) variables and according to various interest groups and also led to better results. Therefore, by using and aggregating various variables and scenarios, areas with high degrees of risk identified. Then rural settlements exposure risk resulting from relatively pessimistic scenario of natural vulnerability was choiced. Eventually, the human vulnerability of settlements have been prioritized using a moderate scenario. The results in all scenarios showed that South and West areas with high values of Peak Horizontal Acceleration, new geological formations and proximity to active faults as areas with high degrees natural vulnerability of risk has been identified and always happening huge earthquakes but from the perspective of human vulnerability variables is moderate.

کلیدواژه‌ها [English]

  • Fars Province
  • Firozabad
  • vulnerability
  • Rural settlements
  • Earthquake
  • Fuzzy logic
  1. -امینی، ج.، کرمی، ج.، علیمحمدی سراب، ع. و هاشمی، س.ه.، 1388. ارزیابی روش‌های پشتیبانی تصمیم‌گیری Fuzzy Screening، AHP، AHP_OWA در مکان‌یابی مراکز فرهنگی-ورزشی روستایی (مطالعه موردی: دهستان کانی بازار مهاباد)، سال اول، شماره چهارم، سنجش از دور و GIS ایران، تهران، ص 41-54.
  2. -پورکرمانی، م. و آرین، م.، 1376. سایزموتکتونیک (لرزه زمین‌ساخت)، چاپ اول، انتشارات مهندسین مشاور دزآب، تهران، 270 ص.
  3. -زارع، م.، 1384. مقدمه‌ای بر زلزله‌شناسی کاربردی، چاپ اول، انتشارات پژوهشگاه بین‌المللی زلزله-شناسی و مهندسی زلزله، تهران، 304 ص.
  4. -زارع، م.، 1388. مبانی تحلیل خطر زمین‌لرزه، چاپ اول، انتشارات پژوهشگاه بین‌المللی زلزله-شناسی و مهندسی زلزله، تهران، 142 ص.
  5. -فرزادبهتاش، م.ر. و حسینی‌جناب، و.، 1385. نقش فناوری GIS در ارتقاء کارایی مدیریت ‌بحران زمین-لرزه در کلانشهرها با مرور بر تدابیر پایگاه اطلاعات جغرافیایی کلانشهرهای کانادا، همایش سراسری راهکارهای ارتقاء مدیریت‌بحران در حوادث و سوانح غیرمترقبه.
  6. -هاشمی، م. و علیمحمدی سراب، ع.، 1389. بررسی الگوهای زمانی-مکانی در داده‌های مربوط به زمین لرزه‌های تاریخی ایران، با استفاده از شاخص‌ها و مدل‌های آمار فضایی، سال دوم، شماره دوم، سنجش از دور و GIS ایران، تهران، ص 55-69.
  7. -Abo El Ezz, A., Nollet, M.J. and Nastev, M., 2015. Assessment of Earthquake Induced Damage in Quebec City, Canada: International Journal of Disaster Risk Reduction, v.12(1), p.16-24.
  8. -Aliabadi, S.F., Sarsangi, A. and Modiri, E., 2015. The Social and Physical Vulnerability Assessment of Old Texture Against Earthquake (Case Study: Fahadan District in Yazd City): Arabian Journal of Geosciences, v. 8(12), p.10775-10787.
  9. -Alparslan, E., Ince, F., Erkan, B., Aydoner, C., Ozen, H., Donertas, A., Ergintav, S., Yagsan, F.S., Zaterogullar, A., Eroglu, I., Deger, M., Elalmıs, H. and Ozkan, M., 2008. A GIS Model for Settlement Suitability Regarding Disaster Mitigation, a Case Study in Bolu Turkey, Engineering Geology, v. 96(3), p. 126-140.
  10. -Altan, O., Toz, G., Kulur, S., Seker, D., Volz, S., Fritsch, D. and Sester, M., 2001. Photogrammetry and Geographic Information Systems for Quick Assessment, Documentation and Analysis of Earthquakes: ISPRS Journal of Photogrammetry & Remote Sensing, v. 55(5-6), p. 359-372.
  11. -Ansal, A., Akinci, A., Cultrera, G., Erdik, M., Pessina, V., Tonuk, G. and Ameri, G., 2009. Loss Estimation in Istanbul Based on Deterministic Earthquake Scenarios of the Marmara Sea Region (Turkey): Soil Dynamics and Earthquake Engineering, v. 29(4), p.699-709.
  12. -Armas, I., 2012. Multi Criteria Vulnerability Analysis to Earthquake Hazard of Bucharest, Romania: Natural Hazards, v. 63(2), p. 1129-1156.
  13. -Armas, I. and Gavris, A., 2016. Census Based Social Vulnerability Assessment for Bucharest, Procedia Environmental Sciences, v. 32, p. 138-146.
  14. -Argyriou, A.V., Teeuw, R.M., Rust, D. and Sarris, A., 2016. GIS Multi Criteria Decision Analysis for Assessment and Mapping of Neotectonic Landscape Deformation: a Case Study from Crete: Geomorphology, v. 253, p. 262-274.
  15. -Bindi, D., Abdrakhmatov, K., Parolai, S., Mucciarelli, M., Grunthal, G., Ischuk, A., Mikhailova, N. and Zschau, J., 2012. Seismic Hazard Assessment in Central Asia: Outcomes from a Site Approach: Soil Dynamics and Earthquake Engineering, v. 37, p. 84-91.
  16. -Cole, S.W., Xu, Y. and Burton, P.W., 2008 Seismic Hazard and Risk in Shanghai and Estimation of Expected Building Damage: Soil Dynamics and Earthquake Engineering, v. 28(10-11), p. 778-794.
  17. -Cutter, S.L., Boruff, B.J. and Shirley, W.L., 2003. Social Vulnerability to Environmental Hazards: Social Science Quarterly, v. 84(2), p. 242-261.
  18. -Douglas, J., 2001. A Comprehensive Worldwide Summary of Strong Motion Attenuation Relationships for Peak Ground Acceleration and Spectral Ordinates (1969 to 2000), London, ESEE Report No. 01-1.
  19. -Fernandez, V.B., 2009. Geo-information for Measuring Vulnerability to Earthquakes: A Fitness for Use Approach, International Institute for GeoInformation Science and Earth Observation, Thesis of MSc, 204 p.
  20. -Ferreira, T.M., Vicente, R., Silva, M.D., Varum, H. and Costa, A., 2013. Seismic Vulnerability Assessment of Historical Urban Centres: Case Study of the Old City Centre in Seixal, Portugal: Journal of Earthquake Engineering, v. 11(5), p. 1753-1773.
  21. -Grasso, S. and Maugeri, M., 2009. The Seismic Microzonation of the City of Catania (Italy) for the Maximum Expected Scenario Earthquake of January 11, 1693: Soil Dynamics and Earthquake Engineering, v. 29(6), p. 953-962.
  22. -Greene, R., Devillers, R., Luther, J.E. and Eddy, B.G., 2011. GIS-Based Multiple-Criteria Decision Analysis: Geography Compass, v. 5(6), p. 412-432.
  23. -Hajibabaee, M., Amini-Hosseini, K. and Ghayamghamian, M.R., 2014. Earthquake Risk Assessment in Urban Fabrics Based on Physical, Socioeconomic and Response Capacity Parameters (a Case Study: Tehran City): Natural Hazards, v. 74(3), p. 2229-2250.
  24. -Hashemi, M. and Alesheikh, A.A., 2011. A GIS-based Earthquake Damage Assessment and Settlement Methodology: Soil Dynamics and Earthquake Engineering, v. 31(11), p. 1607-1617.
  25. -Hashemi, M. and Alesheikh, A.A., 2013. GIS: Agent-based Modeling and Evaluation of an Earthquake-stricken Area with a Case Study in Tehran, Iran: Natural Hazards, v. 69(3), p.1895-1917.
  26. -Hashemi, M., Alesheikh, A.A. and Zolfaghari, M.R., 2013. A Spatio-temporal Model for Probabilistic Seismic Hazard Zonation of Tehran: Computers & Geosciences, v. 58 (8), p. 8-18.
  27. -Hassanzadeh, R., Zorica, N.B., AlaviRazavi, A., Norouzzadeh, M. and Hodhodkian, H., 2013. Interactive Approach for GIS-based Earthquake Scenario Development and Resource Estimation (Karmania Hazard Model): Computers & Geosciences, v. 51, p. 324-338.
  28. -Kappes, M.S., Papathoma-Kohle, M. and Keiler, M., 2012. Assessing Physical Vulnerability for Multi Hazards Using an Indicator Based Methodology: Applied Geography, v. 32(2), p. 577-590.
  29. -Karimzadeh, S., Miyajima, M., Hassanzadeh, R., Amiraslanzadeh, R. and Kamel, B., 2014. A GIS-based Seismic Hazard, Building Vulnerability and Human Loss Assessment for the Earthquake Scenario in Tabriz: Soil Dynamics and Earthquake Engineering, v. 66, p. 263-280.
  30. -Khoshravan, H. and Barimani, H., 2012. Seismic Vulnerability, Caspian Sea Southern Coast: Quaternary International, v. 261, p. 9-13.
  31. -Kuhlicke, C., Scolobig, A., Tapsell, S., Steinfuhrer, A. and Marchi, B.D., 2011. Contextualizing Social Vulnerability: Findings from Case Studies across Europe: Natural Hazards, v.58(2), p.789-810.
  32. -Liangcai, H., 2004. Ground Motion Parameters, p. 1-18.
  33. -Liu, H., Cui, X., Yuan, D., Wang, Z., Jin, J. and Wang, M., 2011. Study of Earthquake Disaster Population Risk Based on GIS: A Case Study of Wenchuan Earthquake Region: Procedia Environmental Sciences, v. 11, p. 1084-1091.
  34. -Liu, J.G., Mason, P.J., Yu, E., Wu, M.C., Tang, C., Huang, R. and Liu, H., 2012. GIS Modelling of Earthquake Damage Zones Using Satellite Remote Sensing and DEM Data: Geomorphology, v. 139-140, p. 518-535.
  35. -Liu, J., Wang, Z., Xie, F. and Lv, Y., 2013. Seismic Hazard Assessment for Greater North China from Historical Intensity Observations: Engineering Geology, v. 164, p. 117-130.
  36. -Liu, J. and Wang, S., 2015. Analysis of the Differentiation in Human Vulnerability to Earthquake Hazard Between Rural and Urban Areas: Case Studies in 5.12 Wenchuan Earthquake (2008) and 4.20 Ya’an Earthquake (2013), China: Journal of Housing and the Built Environment, v. 30(1), p. 87-107.
  37. -Liu, J., Xie, F. and Lv, Y., 2016. Seismic Hazard Assessments for the Ordos Block and Its Periphery in China: Soil Dynamics and Earthquake Engineering, v. 84, p. 70-82.
  38. -Lobatskaya, R.M. and Strelchenko, I.P., 2016. GIS-based Analysis of Fault Patterns in Urban Areas: a Case Study of Irkutsk City, Russia: Geoscience Frontiers, v. 7, p. 287-314.
  39. -Luzi, L., Pergalani, F. and Terlien, M.T.J., 2000. Slope Vulnerability to Earthquakes at Subregional Scale, Using Probabilistic Techniques and Geographic Information Systems: Engineering Geology, v. 58(3), p. 313-336.
  40. -Malczewski, J., 1999. GIS and Multicriteria Decision Analysis: John Wiley & Sons Publishing, New York, 392 p.
  41. -Malczewski, J., 2003. GIS Multicriteria Evaluation with Ordered Weighted Averaging (OWA): Case Study of Developing Watershed Management Strategies: Journal of Environment and Planning A, v. 35, p. 1769-1784.
  42. -Malczewski, J., 2006. GIS Based Multicriteria Decision Analysis: a Survey of the Literature: International Journal of Geographical Information Science, v. 20(7), p.703-726.
  43. -Mardani, A., Jusoh, A. and Zavadskas, E.K., 2015. Fuzzy Multiple Criteria Decision Making Techniques and Applications - Two Decades Review from 1994 to 2014: Expert Systems with Applications, v. 42(8), p. 4126-4148.
  44. -Martins, V.N., Silva, D.S. and Cabral, P., 2012. Social Vulnerability Assessment to Seismic Risk Using Multicriteria Analysis: The Case Study of Vila Franca do Campo (Sao Miguel Island, Azores, Portugal): Natural Hazards, v. 62(2), p. 385-404.
  45. -Miao, C. and Ding, M., 2015. Social Vulnerability Assessment of Geological Hazards Based on Entropy Method in Lushan Earthquake Stricken Area: Arabian Journal of Geosciences, v. 8, p. 10241-10253.
  46. -Miniati, R. and Iasio, C., 2012. Methodology for rapid seismic risk assessment of health structures: Case study of the hospital system in Florence, Italy: International Journal of Disaster Risk Reduction, v. 2(1), p. 16-24.
  47. -Mota de Sa, F., Monica, A.F. and Oliveira, C.S., 2016. QuakeIST Earthquake Scenario Simulator Using Interdependencies: Journal of Earthquake Engineering, p. 1-21.
  48. -Oliveira, C.S., 2008. Lisbon Earthquake Scenarios: A Review on Uncertainties from Earthquake Source to Vulnerability Modelling: Soil Dynamics and Earthquake Engineering, v. 28(10-11), p. 890-913.
  49. -Ornthammarath, T., Warnitchai, P., Worakanchana, K., Zaman, S., Sigbjornsson, R. and Lai, C.G., 2011. Probabilistic Seismic Hazard Assessment for Thailand: Journal of Earthquake Engineering, v. 9(2), p. 367-394.
  50. -Pamungkas, A., Bekessy, S.A. and Lane, R., 2014. Vulnerability Modelling to Improve Assessment Process on Community Vulnerability: Procedia-Social and Behavioral Sciences, v. 135, p. 159-166.
  51. -Peng, Y., 2015. Regional Earthquake Vulnerability Assessment Using a Combination of MCDM Methods: Annals of Operations Research, v. 234(1), p. 95-110.
  52. -Pessina, V. and Fiorini, E., 2014. A GIS Procedure for Fast Topographic Characterization of Seismic Recording Stations: Soil Dynamics and Earthquake Engineering, v. 63, p. 248-258.
  53. -Proag, V., 2014. The Concept of Vulnerability and Resilience: Procedia Economics and Finance, v. 18, p. 369-376.
  54. -Qaddah, A.A. and Abdelwahed, M.F., 2016. GIS-based Site Suitability Modeling for Seismic Stations: Case Study of the Northern Rahat Volcanic Field, Saudi Arabia: Computers & Geosciences, v. 83, p.193-208.
  55. -Rashed, T. and Weeks, J., 2003. Assessing Vulnerability to Earthquake Hazards Through Spatial Multicriteria Analysis of Urban Areas: International Journal of Geographical Information Science, v. 17(6), p. 547-576.
  56. -Renaud, F.G., Birkmann, J., Damm, M. and Gallopın, G.C., 2010. Understanding Multiple Thresholds of Coupled Social-Ecological Systems Exposed to Natural Hazards as External Shocks: Natural Hazards, v. 55(3), p. 749-763.
  57. Robinson, V.B., 2003. A Prespective on the Fundamentals of Fuzzy Sets and Their Use in Geographic Information Systems: Transactions in GIS, v. 7(1), p. 3-30.
  58. -Sarris, A., Loupasakis, C., Soupios, P., Trigkas, V. and Vallianatos, F., 2010. Earthquake Vulnerability and Seismic Risk Assessment of Urban Areas in High Seismic Regions: Application to Chania City, Crete Island, Greece: Natural Hazards, v. 54(2), p. 395-412.
  59. -Schmidtlein, M.C., Shafer, J.M., Berry, M. and Cutter, S.L., 2011. Modeled Earthquake Losses and Social Vulnerability in Charleston, South Carolina: Applied Geography, v. 31(1), p. 269-281.
  60. -Sen, Z., 2010. Rapid Visual Earthquake Hazard Evaluation of Existing Buildings by Fuzzy Logic Modeling: Expert Systems with Applications, v. 37(8), p. 5653-5660.
  61. -Shakya, M., Varum, H., Vicente, R. and Costa, A., 2015. Seismic Vulnerability and Loss Assessment of the Nepalese Pagoda Temples: Journal of Earthquake Engineering, v. 13(7), p. 2197-2223.
  62. -Sharifikia, M., 2010. Vulnerability Assessment and Earthquake Risk Mapping in Part of North Iran Using Geospatial Techniques: Journal of the Indian Society of Remote Sensing, v. 38(4), p. 708-716.
  63. -Sitharam, T.G. and Kolathayar, S., 2013. Seismic Hazard Analysis of India Using Areal Sources: Journal of Asian Earth Sciences, v. 62, p. 647-653.
  64. -Vahdat, K., Smith, N.J. and Amiri, G.G., 2014. Fuzzy Multicriteria for Developing a Risk Management System in Seismically Prone Areas: Socio-Economic Planning Sciences, v. 48(4), p. 1-14.
  65. -Vicente, R., Parodi, S., Lagomarsino, S., Varum, H. and Mendes Silva, J.A.R., 2011. Seismic Vulnerability and Risk Assessment: Case Study of the Historic City Centre of Coimbra, Portugal: Journal of Earthquake Engineering, v. 9(4), p. 1067-1096.
  66. -Vicente, R., Ferreira, T. and Maio, R., 2014. Seismic Risk at the Urban Scale: Assessment, Mapping and Planning: Procedia Economics and Finance, v. 18, p. 71-80.
  67. -Walker, B.B., Taylor-Noonan, C., Tabbernor, A., McKinnon, T.B., Bal, H., Bradley, D., Schuurman, N. and Clague, J.J., 2014. A Multi Criteria Evaluation Model of Earthquake Vulnerability in Victoria, British Columbia: Natural Hazards, v. 74(2), p. 1209-1222.
  68. -Walters, V. and Gaillard, J.C., 2014. Disaster Risk at the Margins: Home Lessness, Vulnerability and Hazards: Habitat International, v. 44(0), p. 211-219.
  69. -Wang, C.H. and Guldmann, J.M., 2016. A Spatial Panel Approach to the Statistical Assessment of Seismic Impacts and Building Damages: Case Study of Taichung, Taiwan: Computers, Environment and Urban Systems, v. 57, p. 178-188.
  70. -Wu, M.C., Liu, J., Cosgrove, J., Mason, P.J., Hongshi Yan, H. and Chang, W.Y., 2014. Modelling of Yingxiu–Beichuan Fault Zone Based on Refined DInSAR Data of 2008 Wenchuan Earthquake: Tectonophysics, v. 630(1), p. 193-207.
  71. -Yagoub, M.M., 2015. Spatiotemporal and Hazard Mapping of Earthquake in UAE (1984 –2012): Remote Sensing and GIS Application: Geoenvironmental Disasters, v. 2, (1), p. 1-14.
  72. -Youssef, A.M., Pradhan, B. and Tarabees, E., 2011. Integrated Evaluation of Urban Development Suitability Based on Remote Sensing and GIS Techniques: Contribution from the Analytic Hierarchy Process: Arabian Journal of Geosciences, v. 4(3), p. 463-473.