تعیین غلظت زمینه‌ برخی از فلزات سنگین در خاک‌های سطحی استان خوزستان به روش فراکتال غلظت- مساحت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه خاک‌شناسی، پردیس علوم و تحقیقات خوزستان، دانشگاه آزاد اسلامی، اهواز، ایران

2 گروه خاک‌شناسی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

3 گروه زمین‌شناسی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

چکیده

مولفه­های تعیین حد آستانه­ غلظت فلزات ­­سنگین در خاک­های مختلف بسیار متغیر است. استفاده از معیارهای موجود در قوانین زیست محیطی سایر کشورها و شهرها، برای بررسی آلودگی این فلزات در منطقه­ای دیگر مناسب نخواهد بود، بنابراین لازم و ضروری است که حد آستانه برای هر منطقه به صورت محلی تعیین شود. در این تحقیق از روش­ فراکتال غلظت- مساحت، به ­منظور تعیین غلظت زمینه­ سه فلز سرب، کبالت و نیکل در خاک­های سطحی استان خوزستان استفاده شده است. این تحقیق یک مطالعه تجربی-کاربردی است. جهت نیل به این هدف، تعداد 87 نمونه از خاک­های سطحی استان خوزستان برداشت و با استفاده از دستگاه طیف سنجی جفت شده پلاسمای القایی (ICP-OES) آنالیز گردید. کمترین و بیشترین میانگین غلظت فلزات سنگین مورد بررسی، به ­ترتیب مربوط به سرب (09/9) و نیکل (34/66) (mg/kg) به­ دست آمد. در این مطالعه بعد از مرتب­­سازی داده­ها به­ ترتیب از زیاد به کم و تعیین فراوانی هر غلظت، نمودارهای لگاریتمی فراوانی تجمعی غلظت­ فلزات در مقابل مساحت رسم شد. با به­ دست آوردن نقاط شکست، حد آستانه­ هر فلز برای روش غلظت - مساحت تعیین شد. مقادیر زمینه برای فلزات کبالت، نیکل و سرب به­ترتیب برابر 93/6، 59/47 و 26/6 میلی­گرم بر کیلوگرم به­ دست آمد. نتایج نشان دادند که کاربرد روش­های فراکتالی در جدایی میزان زمینه از سایر جمعیت‌­های ژئوشیمیایی بسیار مناسب است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of baseline concentration of some heavy metals in surface soils of Khuzestan province by fractal concentration-area method

نویسندگان [English]

  • Azadeh Vaziri 1
  • Navid Ghanavati 2
  • Ahad Nazarpour 3
1 Department of Soil Science, Khuzestan Science and Research Branch, Islamic Azad University, Ahvaz, Iran
2 Department of Soil Science, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
3 Department of Geology, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
چکیده [English]

Introduction
In many countries, baseline concentrations of heavy metals in soil have been studied; this information is used as a reference to assess soil quality status (Karim et al, 2015). Soil concentrations of elements in the soil are a function of the mineralogical composition of the parent material and weathering processes affecting soil formation as well as properties such as particle size, clay content and soil organic matter (Azimzadeh and Khademi, 2013). As a result, the natural concentration of elements in soils is widely variable and the use of baseline (threshold concentration of heavy metals) of other countries and the global average to identify the extent and risks of heavy metal pollution in soils of areas where environmental boundaries are not defined is incorrect (Ghanavati et al, 2019; Nazarpour, 2018). Fractal geometry studies natural phenomena and complex and irregular objects with mathematical relations. One of the major applications of fractal geometry is in estimating the thresholds and thus separating the abnormal community from the field based on their fractal dimension differences (Nazarpour et al, 2015). In this research, this model has been used to determine the baseline concentration of heavy metals.
Materials and methods
In this study, in order to evaluate the background concentration of some heavy metals in surface soils of Khuzestan province. The sampling method was that first, using random sampling distribution in GIS, the proposed neighborhoods in the study area were determined. The points were selected to cover the entire study area. Samples were taken in combination (mixture of 3 samples together, with a distance of 50 to 100 m) from a depth of zero to 20 cm from the soil surface and with an approximate weight of 500 g and a total of 87 samples were prepared. The samples were dried in room air for 48 hours, then crushed and passed through a 200 mesh polyethylene sieve. After preparing the samples, heavy metals were measured by induction coupled plasma spectroscopy (ICP-OES) of the model device (Model Varian735).
Results and discussion
According to the results, the studied heavy metals show a wide range of concentrations. The concentrations of Ni, Co and Pb were in the range between: 38-320, 5-16 and 5-41 mg/kg. The lowest and highest mean concentrations of the studied metals were related to Pb and Ni, 9.09 and 66.34 mg/kg, respectively. High concentrations of heavy metals indicate the impact of human activities in the region (Sadeghdoust et al, 2020). In this study, after sorting the data from high to low and determining the frequency of each concentration, logarithmic plots of cumulative frequency of metal concentration versus area were drawn. By obtaining the breaking points, the threshold of each metal was determined for the concentration-area method. Baseline values for Co, Ni and Pb were 6.93, 47.59 and 6.26 mg/kg, respectively. The results showed that the application of fractal methods in separating the amount of baseline from other geochemical populations is very appropriate.
Conclusion
Geochemical maps prepared by fractal method of concentration-area have a very good adaptation to the conditions of the region in terms of natural conditions of the region, land use and especially the effect of industrial units on the concentration and abundance of heavy metals and heavy metal pollution in the region. The results show the effect of anthropogenic factors on the concentration of metals. In general, the results showed that different factors, including human and natural factors together, are always effective in the distribution and concentration of heavy metals. Therefore, in order to maintain the balance of the ecosystem, human health, identify adverse effects on the environment and its proper management, it is necessary to determine the concentration of the field or the limits of environmental safety according to climatic conditions, region and soil properties.

کلیدواژه‌ها [English]

  • Geochemical population
  • Background concentration
  • Concentration-area
  • Heavy metal
  • Fractal model
-امامی، ح.، 1395. برآورد برخی پارامترهای هیدرولیکی خاک با استفاده از بعد فرکتالی ذرات جامد خاک، مدیریت خاک و تولید پایدار، شماره­ 6، ص 219-232.‎
-پیروتی، ش. و قاسم زاده، م.، 1391. اثرات سمی فلزات سنگین بر بخش­های مختلف بدن انسان، خلاصه مقالات سومین کنگره عناصر کمیاب ایران، دانشگاه علوم پزشکی کاشان.
-رجب زاده، م.ع.، یزدانی، س.، نظرپور، ا. و احمدی، ا.، 1394. کاربرد روش فراکتال عیار مساحت برای جداسازی بی­هنجاری های ژئوشیمیایی از زمینه در رسوبات آبراهه­ای منطقه مزایجان، برگه 1: 100000 سوریان، استان فارس.‎ ژئوشیمی، شماره­ 1، ص 15-20.
-عظیم زاده، ب. و خادمی، ح.، 1392. تخمین غلظت زمینه برای ارزیابی آلودگی برخی فلزات سنگین در خاک­های سطحی بخشی از استان مازندران، آب و خاک، شماره­ 3، ص 548-559.
-محمد شفیعی، م.ر. و محمد شفیعی، ا.ح.، 1395. فلزات سنگین، منابع و اثرات آن بر انسان، کنفرانس بین­المللی معماری، شهرسازی، مهندسی شهری، هنر و محیط زیست، تهران، ایران.
 
 
 
-Afzal, P., Afshar, Z.Z., Khankandi, F.S., Wetherelt, A. and Yasrebi, B.A., 2012. Separation of uranium anomalies based on geophysical airborne analysis by using Concentration-Area (CA) Fractal Model, Mahneshan 1: 50000 Sheet, NW IRAN: Journal of Mining and Metallurgy A: Mining, v. 48(1), p. 1-11.
-Alfaro, M.R., Montero, A., Ugarte, O.M., Nascimento, C.W.A., Aguiar Accioly, A.M., Biondi, C.M. and Silva, Y.J.A.B., 2015. Background concentrations and reference values for heavy metals in soils of Cuba: Environmental monitoring and assessment, v. 187(1), p. 41-58.
-Babaei, H., Ghanavati, N. and Nazarpour, A., 2018. Contamination level of mercury in the street dust of Ahvaz city and its spatial distribution: Journal of Water and Soil Science, v. 22, p. 249-259.
-Blonda, M. and Valenzano, B., 2014. Proposal of procedure to determine metals and metalloids background values in contaminated soils. Case study of a national interest site in South Italy: Desalination and Water Treatment, v. 52(4-6), p. 1171-1176.
-Borojerdnia, A., Rozbahani, M.M., Nazarpour, A., Ghanavati, N. and Payandeh, K., 2020. Application of exploratory and Spatial Data Analysis (SDA), singularity matrix analysis, and fractal models to delineate background of potentially toxic elements: A case study of Ahvaz, SW Iran: Science of the Total Environment.
-Cicchella, D., De Vivo, B. and Lima, A., 2005. Background and baseline concentration values of elements harmful to human health in the volcanic soils of the metropolitan and provincial areas of Napoli, Italy: Geochemistry: Exploration, Environment, Analysis, v. 5(1), p. 29-40.
-Chen, Z., Chen, J., Tian, S. and Xu, B., 2017. Application of fractal content-gradient method for delineating geochemical anomalies associated with copper occurrences in the Yangla ore field, China: Geoscience Frontiers, v. 8(1), p. 189-197.
-Cheng, Q., Agterberg, F.P. and Ballantyne, S.B., 1994. The separation of geochemical anomalies from background by fractal methods: Journal of Geochemical Exploration, v. 51(2), p.109-130.
-Deng, J., Wang, Q., Yang, L., Wang, Y., Gong, Q. and Liu, H., 2010. Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China: Journal of Geochemical Exploration, v. 105(3), p. 95-105.
-Farland, Wh., 1991. The United-States-Environmental-Protection-Agency Risk Assessment Guidelines-Current Status and Future-Directions:  Toxicology and Industrial Health., v. 7(5-6), p. 31-47.
-Geranian, H., Mokhtari, A.R. and Cohen, D.R., 2013. A comparison of fractal methods and probability plots in identifying and mapping soil metal contamination near an active mining area, Iran: Science of the total environment, v. 463, p. 845-854.
-Ghabeishavi, A., Vaziri-Moghaddam, H. and Taheri, A., 2009. Facies distribution and sequence stratigraphy of the Coniacian–Santonian succession of the Bangestan Palaeo-high in the Bangestan Anticline, SW Iran: Facies, v. 55(2), p. 243-257.
-Ghanavati, N., Nazarpour, A. and Watts, M.J., 2019. Status, source, ecological and health risk assessment of toxic metals and polycyclic aromatic hydrocarbons (PAHs) in street dust of Abadan, Iran: Catena, v. 177, p. 246-259.
-Ghorbani, M.R., Ghanavati, N., Babaenejad, T., Nazarpour, A. and Payandeh, K., 2020. Assessment of the potential ecological and human health risks of heavy metals in Ahvaz oil field, Iran: Plos one, v. 15(11), p. 24-43.
-Guillén, M.T., Delgado, J., Albanese, S., Nieto, J.M., Lima, A. and De Vivo, B., 2011. Environmental geochemical mapping of Huelva municipality soils (SW Spain) as a tool to determine background and baseline values: Journal of Geochemical Exploration, v. 109(1-3), p. 59-69.
-Hassanpour, S. and Afzal, P., 2013. Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran: Arabian Journal of Geosciences, v. 6(3), p. 957-970.
-Jiang, Y., Zeng, X., Fan, X., Chao, S., Zhu, M. and Cao, H., 2015. Levels of arsenic pollution in daily foodstuffs and soils and its associated human health risk in a town in Jiangsu Province, China: Ecotoxicology and Environmental Safety, v. 122, p. 198-204.
-Kabata-Pendias, A. and Pendias, H., 2001. Trace Elemnts in Soil and Plant (3rd ed.). CRC Press LLC, Washington, D.C.
-Karim, Z., Qureshi, B.A. and Mumtaz, M., 2015. Geochemical baseline determination and pollution assessment of heavy metals in urban soils of Karachi, Pakistan: Ecological Indicators, v. 48, p. 358-364.
-Leyssens, L., Vinck, B., Van Der Straeten, C., Wuyts, F. and Maes, L., 2017. Cobalt toxicity in humans.A review of the potential sources and systemic health effects: Toxicology, v. 387, p. 43-55.
-Liu, Y., Zhou, K. and Cheng, Q., 2017. A new method for geochemical anomaly separation based on the distribution patterns of singularity indices: Computers & Geosciences, v. 105, p. 139-147.
-Munoz, A. and Costa, M., 2016. Elucidating the mechanisms of nickel compound uptake, a review of particulate and nanonickel endocytosis and toxicity: Toxicol Appl Pharmacol, v. 260, p. 1-16.
-Nazarpour, A., 2018. Application of CA fractal model and exploratory data analysis (EDA) to delineate geochemical anomalies in the: Takab 1: 25,000 geochemical sheet, NW Iran: Iranian Journal of Earth Sciences, v. 10(2), p. 173-180.
-Nazarpour, A., Sadeghi, B. and Sadeghi, M., 2015. Application of fractal models to characterization and evaluation of vertical distribution of geochemical data in Zarshuran gold deposit, NW Iran: Journal of Geochemical Exploration, v. 148, p. 60-70.
-Pinto, M.C., Silva, E.F., Silva, M.M.V.G. and Melo-Gonçalves, P., 2015. Heavy metals of Santiago Island (Cape Verde) top soils, estimated background value maps and environmental risk assessment: Journal of African Earth Sciences, v. 101, p. 162-176.
-Rezaie, M. and Afzal, P., 2016. The effect of estimation methods on fractal modeling for anomalies’ detection in the Irankuh area, Central Iran: Journal of Geopersia, v. 6(1), p. 105-116.
-Sadeghdoust, F., Ghanavati, N., Nazarpour, A., Babaenejad, T. and Watts, M.J., 2020. Hazard, ecological, and human health risk assessment of heavy metals in street dust in Dezful, Iran: Arabian Journal of Geosciences, v. 13(17), p. 1-14.
-Santos-Francés, F., Martínez-Graña, A., Alonso Rojo, P. and García Sánchez, A., 2017. Geochemical background and baseline values determination and spatial distribution of heavy metal pollution in soils of the Andes mountain range (Cajamarca-Huancavelica, Peru): International journal of environmental research and public health, v. 14(8), p. 85-109.
-Shapiro, S.S. and Wilk, M.B., 1965. An analysis of variance test for normality (complete samples): Biometrika, v. 52(3/4), p. 591-611.
-Su, Y.Z. and Yang, R., 2008. Background concentrations of elements in surface soils and their changes as affected by agriculture use in the desert-oasis ecotone in the middle of Heihe River Basin, North-west China: Journal of Geochemical Exploration, v. 98(3), p. 57-64.
-Yeganeh, M., Afyuni, M., Khoshgoftarmanesh, A.H., Khodakarami, L., Amini, M., Soffyanian, A.R. and Schulin, R., 2013. Mapping of human health risks arising from soil nickel and mercury contamination: Journal of hazardous materials, v. 244, p. 225-239.
-Yuen, J.Q., Olin, P.H., Lim, H.S., Benner, S.G., Sutherland, R.A. and Ziegler, A.D., 2012. Accumulation of potentially toxic elements in road deposited sediments in residential and light industrial neighborhoods of Singapore: Journal of Environmental Management, v. 101, p. 151-163.
-Zuo, R. and Wang, J., 2016. Fractal/multi fractal modeling of geochemical data: A review: Journal of Geochemical Exploration, v. 164, p. 33-41.