جایگاه تکتونوماگمایی و دما- فشارسنجی گدازه‌های حدواسط پالئوژن گنجین براساس کانی کلینوپیروکسن، شاهدی بر ماگماتیسم جنوب طارم (آذربایجان شرقی)

نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده علوم زمین، سازمان زمین‌شناسی و اکتشافات معدنی کشور، تهران، ایران

چکیده

تکاپوی آتشفشانی پالئوژن در زون ماگمایی البرزغربی-آذربایجان از گسترش پراکنده‌ای برخوردار است. در این پژوهش تراکی آندزیت­های گنجین در جنوب طارم مورد بررسی قرار گرفته­اند. پلاژیوکلاز، کلینوپیروکسن، آمفیبول از مهم‌ترین کانی‌های این گدازه‌های حدواسط با بافت هیالوپورفیریک و میکرولیتیک پورفیریک می­باشند. کلینوپیروکسن­های منطقه، در مطالعات شیمی کانی، ترکیب دیوپسیدی (Wo43-51, En39-47, Fs9-11) را نشان می‌دهند و در گستره کلینوپیروکسن­های کلسیم، منیزیم و آهن‌دار و آلمینودیوپسید قرار می‌گیرند. طیف عدد منیزیم) 67% تا 74=%(Mg# کلینوپیروکسن‌ها، یک ماگمای والد کم سیلیس برای منشا تراکی آندزیت‌های این منطقه نشان می‌دهد. الگوهای منطقه­بندی عادی این کانی‌ها نشان می‌دهد که فرایند تفریق در تکامل این سنگ‌ها عاملی مؤثر بوده است. برآوردهای زمین-دما فشارسنجی این کانی‌ها، گستره دمایی 1200 تا 1260(±50) درجه سانتی‌گراد، فشار 4/5 تا 2/6 کیلوبار در ژرفای 19 تا 21 کیلومتری را در تبلور این کانی مشخص می‌نماید. گریزندگی بالای اکسیژن (2/5-10%) دیوپسیدها، وابستگی ماگماهای والد این سنگ‌ها را به جایگاه محیط تکتونیکی کمان پس از تصادم پیشنهاد می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of distibution pollution and source of heavy metals in the agricultural soil of Bardsir Basin (Kerman Province)

نویسندگان [English]

  • Monireh Kheirkhah
  • Mohammad Mobashergarmi
Themobarometry and tecteno magmatic setting of Genjin Paleogene intermediate lavas based on clinopyroxene crystals chemistry, Evidence for south of Tarom (eastern Azerbaijan) magmatism
چکیده [English]

Introduction
The geochemical characteristics of materials in the environment are related to the chemical properties of the sources. In other words, the concentration of heavy metals in the soil depends on the type and chemistry of the parent rocks, which has formed the soil through the weathering processes and has led to different concentration of heavy metals in the soils. In addition to the composition of the parent rocks, a variety of natural and man-made factors are effective in increasing element concentration in the environment which causes intense pollution. Therefore, in short, the earth has a direct impact on human health through the food chain (eating and drinking) and the inhalation of dust and gases. Thus, the main purpose of this study is investigation and monitoring the arsenic, antimony, lead and cadmium concentrations and plotting the map of pollution distribution in the agricultural soil of Bardsir catchment.
Methodology
Position of sampling points is determined according to expert judgment based on previous research, topographic maps, geology, satellite images and field study. These were selected to obtain the suitable distribution and zoning map of the study area. Also, characteristics identify the effect of geology on the pollution of the study area. 105 samples of composed agricultural soils were collected by averaging method from less than 10 cm in depth to prevent the potential effect of anthropogenic pollutants. Samples were sieved with a 2 mm sieve and particles smaller than 200 mesh were sent to the laboratory for 4-element chemical analysis by ICP-MS method. Statistical analysis was performed to measure the concentration of heavy metals, index of geo-accumulation, degree of pollution, risk potential factor and ecological risk.
Results
The results show that agricultural soils are polluted by arsenic and antimony (14% in terms of arsenic and 29.5% in terms of antimony), more than allowable levels in some parts of the study area. Statistical analysis also verified that only As and Sb show low to intense pollution while the contamination and risk of Cd and Pb are low. The As zoning map shows that the contaminated agricultural soils are located in the center and north (basin outlet) of the study area. This may be related to the irrigation with polluted river, which is located in the downstream of volcanic outcrops, or to the synergy of different polluted waters at the outlet of the area or flood irrigation. These can transfer the dissolved pollutants from upstream to agricultural land. The Sb concentration zoning shows that the agricultural soils with the highest pollution are located in the upstream and near outcrops including south, west, east, and center of the study area, which is due to the low solubility of antimony compared to arsenic.
 
 
Conclusion
The overall results indicate that the agricultural soil is polluted to arsenic and antimony in some areas. Evaluation of the origin of these elements showed that the pollution has mostly geogenic resources and is derived from alteration and Cenozoic volcanic outcrops while anthropogenic pollution showed a small contribution to pollution. The transport and re-precipitation of heavy metals is controlled by dissolution- precipitation and adsorption-desorption reactions, and its transporting is controlled by oxyhydroxides of these elements in the study area.

کلیدواژه‌ها [English]

  • Arsenic
  • Antimony
  • Geology
  • Pollution index
-نبوی، م.ح.، 1355. دیباچه­ای بر زمین­شناسی ایران، سازمان زمین­شناسی و اکتشافات معدنی کشور، تهران، 109 ص.
-فریدی، م. و انوری، ا.، 1379. نقشه­ زمین­شناسی هشتجین، مقیاس .....1:1، سازمان زمین­شناسی و اکتشافات معدنی کشور.
 
 
 
-Ao, S.J., Xiao, W.J., Han, C.M., Mao, Q.G. and Zhang, J.E., 2010. Geochronology and geochemistry of early Permian mafic-ultramafic complexes in the Beishan area, Xinjiang, NW China: implications for late Paleozoic tectonic evolution of the southern Altaids. Gondwana Research, v. 18, p. 466-478.
-Aoki, K.I. and Shiba, I., 1973. Pyroxenes from Lherzolite Inclusions of Itinome-Gata, Japan. Lithos, v. 6, p. 41-51.
-Aydin, F., Karsli, O. and Chen, B., 2008. Petrogenesis of the Neogene alkaline volcanics with implications for post-collisional lithospheric thinning of the Eastern Pontides, NE Turkey, Lithos, v. 104, p. 249-266.
-Aydin, F., KarslI, O., Sadiklar, M.B. and Altherr, R., 2001 Mineralogy and chemical characteristics of the sector and oscillatory zoned diopsides from Pliocene alkaline volcanic suites, South of Trabzon/NE-Turkey. Beihefte zum European Journal of Mineralogy, v. 13, p. 17-32.
-Berger, J., Féménias, O., Mercier, J.C.C. and Demaiffe, D., 2005. Ocean-floor hydrothermal metamorphism in the Limousin ophiolites (western French Massif Central): evidence of a rare preserved, Journal of Metamorphic Geology, v. 23, p. 795-812.
-Bertrand, P. and Mercier, J.C., 1985. The mutual solubility of coexisting ortho- and clinopyroxene: toward an absolute geothermometer for natural system? Earth and Planetary Science Letters, v. 76, p. 109-122.
-Bindi, L., Cellai, D., Melluso, L., Conticelli, S., Morra, V. and Menchetti, S., 1999. Crystal chemistry of clinopyroxene from alkaline undersaturated rocks of the Monte Vulture Volcano, Italy. Lithos, v. 46, p. 259-274.
-Butler, R.F., 1992. Paleomagnetism: Magnetic Domains to Geologic Terranes Blackwell Scientific Publications., Boston, 319 p.
-Dal Negro, A., Carbonin, S., Molin, G., Cundari, A. and Piccirillo, E., 1982. Intracrystalline cation distribution in natural clinopyroxenes of tholeiitic, transitional, and alkaline basaltic rocks. In: Advances in physical geochemistry. Springer, p. 117-150.
-Deer, W.A., Howie, R.A. and Zussman, J., 1992. An Introduction to the Rock forming
-Deer, W.A., Howie, A. and Zussman, J., 1986. An interduction to the rock – forming minerals, 17th ed., Longman, 528 p.
-Dobosi, G. and Horváth, I., 1988. High-and low-pressure cognate clinopyroxenes from alkali lamprophyres of the Velence and Buda Mountains. Neues Jahrbuch Fur Mineralogie-Abhandlungen, v. 158, p. 2-412.
-Droop, G.T.R., 1987. A general equation for estimating Fe3+ in ferromagnesian silicates and oxides from microprobe analysis, using stoichiometric criteria. Mineralogical Magazine, v. 51, p. 431-437.
-Droop, G.T.R., 1987. A general equation for estimating Fe3+ in ferromagnesian silicates and oxides from microprobe analysis, using stoichiometric criteria. Mineralogical Magazine, v. 51, p. 431-437.
-Helz, R.T., 1973. Phase relations of basalts in their melting range at PH2O= 5 kb as a function of oxygen fugacity. Journal of Petrolology, v. 17. P. 139-193.
-Hoskin, P.W.O., Arslan, M. and Aslan, Z., 1998. Clinopyroxene phenocryst formation in an alkaline magma: Interpretations from oscillatory zoning. Goldschmidt Conference, Mineralogical Magazine Abstracts, v. 62, p. 653-654.
-Kheirkhah, M., Allen, M.B. and Emami, M., 2009. Quaternary syn-collision magmatism from the Iran/Turkey borderlands. Journal of Volcanology and Geothermal Research v. 182, p. 1-12.
-Kherikhah, M. and Aghaali, E., 2018. Petrographical investigation of the prismatic columns rocks in the North of Zanjan (NW Iran).2th Trigger International Conference, Tehran, Iran.
-Kress, V.C. and Carmichael, I.S.E., 1988. Stoichiometry of the iron oxidation reaction in silicate melts. American Mineralogy, v. 73, p. 1267-1274.
-Kretz, R., 1994. Metamorphic Crystallization. John Wiley and Sons, Chichester and New York.
-Lebas, N.J., 1962. the role of aluminous in igneous clinopyroxenes with relation to their parentage. American Journal of Science, v. 260, p. 267-288.
-Leterrier, J., Maury, R.C., Thonon, P., Girard, D. and Marchal, M., 1982. Clinopyroxene Composition as a Method of Identification of the Magmatic Affinities of Paleo-Volcanic Series. Earth and Planetary Science Letters, v. 59, p. 139-154.
-Morimoto, N., Fabrise, J., Ferguson, A., Ginzburg, I.V., Ross, M., Seifert, F.A., Zussman, J., Akoi, K.I. and Gottardi, G., 1988. Nomenclature of pyroxenes. Mineralogical Magazine, v. 52, p. 535-55.
-Nimis, P. and Taylor, W.R., 2000. Single clinopyroxene Thermobarometery for garnet peridotites. Part I. Calibration and testing of the Cr-in-Cpx barometer and an enstitite-in-Cpx thermometer. Contribiutions to Mineralalogy and Petrolology, v. 139, p. 541-554.
-Nelson, S.T. and Montana, A., 1992. Sieved Textured Plagioclase in Volcanic Rocks Produced by Rapid Decompression. American Mineralogist, v. 77, p. 1242-1249.
-Nosova, A.A., Sazonova, L.V., Narkisova, V.V. and Simakin, S.G., 2002. Minor elements in clinopyroxene from Paleozoic volcanics of the Tagil Island arc in the Central Urals. Geochemistry International, v. 40, p. 219-232.
-Nisbet, E.G. and Pearce, J.A., 1997. Clinopyroxene composition of mafic lavas from different tectonicsettings. Contributions to Mineralogy and Petrology, v. 63, p. 161-173.
-Nosova, A.A., Sazonova, L.V., Narkisova, V.V. and Simakin, S.G., 2002. Minor elements in clinopyroxene from Paleozoic volcanics of the Tagil island arc in the Central Urals. Geochemistry International, v. 40, p. 219-232.
-Papike, J.J., Cameron, K.L. and Baldwin, K., 1974 Amphiboles and pyroxenes: characterization of other than quadrilateral components and estimates of ferric iron from microprobe data. Geology Society of America, v. 6, p. 1053-1054.
-Putirka, K.D., 2008. Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, v. 69, p. 61-120.
-Ridolfi, F., Renzulli, A. and Puerini, M., 2010. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contribution to Mineralogy and Petrology, v. 160, p. 45-66.
-Schweitzer, E.L., Papike, J.J. and Bence, A.E., 1979. Statitical analysis of clinopyroxenes from deep- sea basalts American Mineralogist, v. 64, p. 501-513.
-Soesoo, A., 1997. a multivariate statistical analysis of clinopyroxene composition: empirical coordinates for the crystallization PT-estimations. Geological Society of Sweden (Geologiska Föreningen), v. 119, p. 55-60.
-Verdel, C., Wernicke, B.P., Hassanzadeh, J. and Guest, B., 2011. A Paleogene extensional arc flare-up in Iran. Tectonics 30:TC3008.
-Vincent, S.J., Allen, M.B., Ismail-Zadeh, A.D., Flecker, R., Foland, K.A. and Simmons, M.D., 2005. Insights from the Talysh of Azerbaijan into the Paleogene evolution of the south Caspian region. Geological Society of America Bulletin, v. 117, p. 1513-1533. http://dx.doi.org/10.1130/B25690.1.
-Wass, S.Y., 1979. Multiple origins of clinopyroxenes in alkali basaltic rocks. Lithos v. 12, p. 115-132.
-Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals, American Mineralogist, v. 95, p. 185-187.
-Zhu, Y. and Ogasawara, Y., 2004. Clinopyroxene phenocrysts (with green salite cores) in, trachybasalts: implications for two magma chambers under the Kokchetav UHP massif, North Kazakhstan. Journal of Asian Earth Sciences, v. 22, p. 517-527.