ارزیابی میکروفاسیس، محیط رسوبی و کانی‌شناسی اولیه سازند گرو در برش سطح‌الارضی الیگودرز، لرستان

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه حوضه‌های رسوبی و نفت، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

چکیده

مقدمه: با توجه به اهمیت سازند گرو به ­عنوان سنگ منشأ مهم در حوضه رسوبی زاگرس، در این پژوهش سعی بر آن است که میکروفاسیس ها، مدل رسوبی، ژئوشیمی رسوبی این سازند در برش الیگودرز واقع در جنوب شرق لرستان شناسایی و معرفی گردد.
مواد و روش­ها: 235 برش الیگودرز (جنوب شرق لرستان) در زون زاگرس مرتفع و در محدوده جغرافیایی عرض شمالی ″05 ′04°33 و طول شرقی″17 ′00°49 واقع شده است. مقطع نازک با هدف شناسایی میکروفاسیس­ها و محیط رسوبی تهیه و مطالعه شدند همچنین 40 نمونه­ برای تعیین گستره­ مقادیر عناصر اصلی و فرعی (Ca, Mg, Sr, Na, Mn, and Fe) توسط دستگاه طیف­سنج جذب اتمی (AAS) تجزیه شدند.
بحث و نتایج: ضخامت سازند گرو در برش سطح­الارضی الیگودرز 483 متر است، و لیتولوژی به­طور عمده شامل شیل­آهکی و آهک­شیلی می­باشد. مرز زیرین سازند گرو با سنگ آهک­های برشی معادل سازند گوتنیا به­ صورت ناپیوستگی فرسایشی و مرز بالایی به­ دلیل قرار گرفتن سازند در هسته ناودیس نامشخص است. مطالعه مقاطع میکروسکوپی این برش منجر به­ شناسایی 7 میکروفاسیس در کمربند رخساره­ای بخش عمیق دریا گردید. سازند گرو براساس عناصر اصلی و فرعی و نسبت این عناصر در مقابل هم، ترکیب کانی­شناسی اولیه عمدتاً آراگونیتی بوده است و تحت­تأثیر دو نوع انحلال در سیستم بسته و باز قرار گرفته­اند. همچنین سازند گرو دارای شرایط احیایی و یا افزایش تأثیر دیاژنز متائوریکی بوده است.
نتیجه ­گیری:

سازند گرو دارای ضخامت 483 متر است، که غالباً از شیل­های­آهکی و سنگ آهک­های­ شیلی تشکیل شده است. مرز زیرین سازند گرو برروی سنگ آهک­های برشی معادل سازند گوتنیا قرار گرفته است و مرز بالایی آن به­ دلیل قرار گرفتن در هسته ناودیس نامشخص است.
مهم­ترین اجزاء زیستی شناسایی شده در بخش­های مختلف سازند گرو شامل رادیولر­ها، فرامینیفر­های پلانکتون (گلوبیژرنیلوئیدس، هدبرگلا، لئوپولدینا) می­باشد. از جمله مهم­ترین ترکیبات غیرکربناته شناسایی شده ترکیبات آهن­دار است.
سازند گرو در یک کمربند رخساره­ای بخش عمیق دریا متعلق به یک پلاتفرم کربناته از نوع رمپ تشکیل شده است. ترکیب کانی­شناسی اولیه عمدتاً آراگونیتی بوده است و تحت­تأثیر دو نوع انحلال در سیستم بسته و باز قرار گرفته­اند. همچنین دارای شرایط احیایی و یا افزایش تأثیر دیاژنز متائوریکی بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of microfacies, sedimentary environment and original mineralogy of the Garau Formation in Aligudarz section, Lorestan

نویسندگان [English]

  • Saeed Shabrang
  • Ehsan Dehyadegari
  • Mohammad Hoseyn Adabi
Department of Sedimentary Basin and Petroleum, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Introduction: Since the Garau Formation is important as a source rock in the Zagros sedimentary basin, in this research, tried to identify and introduce microfacies, sedimentary model, and sedimentary geochemistry of this formation in Aligudarz section located in the southeast of Lorestan.
Materials and Methods: Aligudarz section (southeast of Lorestan) is located in the high Zagros zone and in the geographical range of north latitude 33°04′05″ and east longitude 49°00′17″. To identifying microfacies and sedimentary environment, 235 thin sections were prepared and studied. Also, 40 samples were analyzed by atomic absorption spectrometer (AAS) to determine the range of values of major and minor elements (Ca, Mg, Sr, Na, Mn, and Fe).
Results and discussion: The Garau Formation thickness in Aligudarz section is 483 m, and lithology consists mainly of limestone, shale and shaly limestone. The lower boundary of the Garau Formation with brrecia limestones is equivalent to the Gotnia Formation in the form of unconformity and the upper boundary is not clear due to its location in the syncline core. Study of this section microscopic sections led to the identification of 7 microfacies in the deep-sea facies belt. Based on the major and minor elements and the ratio of these elements to each other, original mineralogy composition has been mainly aragonite and have been affected by two types of dissolution in closed and open systems. And also has anoxic conditions or an increase in the effect of meteoric diagenesis. The original mineralogy composition has been mainly aragonite and have been affected by two types of dissolution in closed and open systems. Due to anoxic conditions or an increase in the effect of meteoric diagenesis.
Conclusions:

Thickness of this section is 483 meters, and lithology consists mainly of limestone, shale and shaly limestone. The lower boundary of the Garau Formation with brrecia limestones is equivalent to the Gotnia Formation in the form of unconformity and the upper boundary is not clear due to its location in the syncline core.
The most important biological components identified in different parts of the Garau Formation include radiolarian, planktonic foraminifera (Globigerinelloides, Hedbergella, Leupoldina). Among the most important non-carbonate compounds are iron oxides.
The Garau Formation is formed in the deep-sea facies belt belonging to a ramp-type carbonate platform. The original mineralogy has been mainly aragonite and have been affected by two types of dissolution in closed and open diagenetic systems, possibly due to anoxic conditions or an increase in the effect of meteoric diagenesis

کلیدواژه‌ها [English]

  • Aligudarz
  • Sedimentary Geochemistry
  • Garau Formation
  • Sedimentary Environment
  • Microfacies
Adabi, M.H., 2004. A re-evaluation of aragonite versus calcite sea, Carbonates and Evaporates, v. 19, p. 133-141.
Adabi, M.H. and Asadi Mehmandosti, E., 2008. Microfacies and geochemistry of the Ilam Formation in the Tang-e- Rashid area, Izeh, S.W. Iran: Journal of Asian Earth Sciences, v. 33, p. 267-277.
Adabi, M.H. and Rao, C.P., 1991. Petrographic and geochemical evidence for
original aragonitic mineralogy of Upper Jurassic carbonates (Mozduran Formation), Sarakhs area, Iran: Sedimentary Geology, v. 72, p. 253-267.
Adabi, M.H. and Rao, C.P., 1996. Petrographic, elemental and isotopic criteriafor the recognition of carbonate mineralogy and climates during the Jurassic (e. g. from Iran and England), 13th Australian Geological Convention, p. 6.
Adabi, M.H., Salehi, M.A. and Ghabeishavi, A., 2010. Depositional environment, sequence stratigraphy and geochemistry of Lower Cretaceous carbonates (Fahliyan London, Geological Society Special Publication, v. 117, p. 367-376.
Adabi, M.H., 2011. Sedimentary Geochemistry, Arian Zamin, Second Edition, 503 p (in Persian).
Ezampanah, Y., Sadeghi, A., Adabi, M.H. and Jamali, A.M., 2012. Biostratigraphy of the Garau Formation in Naft well subsurface stratigraphic section, South Kermanshah, Journal of Stratigraphy and Sedimentology Researches, v. 28(2), p. 69-82 (in Persian).
Ala, M.A., Kinghorn, R.R.F. and Rahman, M., 1980. Organic geochemistry and
source rock characteristics of the Zagros petroleum province, Southwest Iran, Journal of
Petroleum Geology, v. 3, p. 61-89.
Bordenave, M.L. and Burwood, R., 1990. Source rock distribution and maturation in the
Zagros Orogenic Belt: Provenance of Asmari and Bangestan reservoir oil accumulations,
Organic Geochemistry, v. 16, p. 369-387.
Bordenave, M.L. and Huc, A.Y., 1995. The Cretaceous source rock in the Zagros
Foothills of Iran: Reve De Institut Francais Du Petrole, v. 50, p. 727-754.
Budd, D., 2002. The relative roles of compaction and early cementation in the destruction of permeability in carbonate grainstones: a case study from the Paleogene of west-central Florida, Journal of Sedimentary Research, v. 72, p. 116-128.
Brand, U., Azmy, K. and Veizer, J., 2006. Evaluation of the Salinic I tectonic, Cancañiri glacial and Ireviken biotic events: Biochemostratigraphy of the Lower Silurian succession in the Niagara Gorge area, Canada and U.S.A.: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 241(2), p. 192-213.
Brand, U. and Veizer, J., 1980. Chemical diagenesis of multicomponent carbonate system, II: stable isotopes, Journal of Sedimentary Petrology, v. 51, p. 987-997.
Cantrell, D.L., 2006. Cortical fabrics of Upper Jurassic ooid, Arab Formation, Saudi Arabia: Implication for original carbonate mineralogy, Sedimentary Geology, v. 186, p. 157-170.
Coccioni, R., Silva, I.P., Marsili, A. and Verga, D., 2007. First radiation of Cretaceous planktonic foraminifera with radially elongate chambers at Angles (Southeastern France) and biostratigraphic implications, Rev Micropaleontol, v. 50, p. 215-224.
Dickson, J., 1965. Carbonate identification and genesis as revealed by staining, Journal of Sedimentary Petrology, v. 205, p. 491-505.
Dunham, R.J., 1962, Classifcation of carbonate rocks according to depositional texture: American Association of Petroleum Geologists, p. 108-121.
Ezampanah, Y., Sadeghi, A., Jamali, A.M. and Adabi, M.H., 2013. Biostratigraphy of the Garau Formation (Berriasian? – Lower Cenomanian) in central part of Lurestan zone, northwest of Zagros, Iran, Cretaceous Research, v. 46, p. 101-113.
Flugel, E., 2004. Microfacies of Carbonate Rocks: Springer-Verlag, Berlin, Heidelberg, 976 p.
Flugel, E., 2010. Microfacies Analysis of Limestones, Analysis Interpretationand Application, Springer-Verlag, 976 p.
Gorican, S., Pavsic, J. and Rozic, B., 2012, Bajocian to Tithonian age of radiolarian chert in the Tolmin basin (NW Slovenia), Bulletin de la Société Géologique de France, v. 183, p. 369-382.
Hamon, Y. and Merzeraud, G., 2007. C and O isotope stratigraphy in shallow marine
carbonate: a tool for sequence stratigraphy (example from the Lodeve region, peritethian
domain): Swiss Journal Geoscience, v. 100, p. 71-84.
Heldet, M., Bachmann, M. and Lehmann, J., 2008. Microfacies, biostratigraphy and geochemistry of the hemipelagic Barremian–Aptian in north-central Tunisia: Influence of the OAE 1a on the southern Tethys margin, Palaeogeography, Palaeoclimatology, Palaeoecology, v. 261, p. 246-260.
Jamalian, M., Adabi, M., Moussavi, M.R. and Sadeghi, A., 2011. Geochemistry and petrography of Garau Formation with Neocomian-Aptian age in type section (Kabir Kuh, Ilam province), Journal of Stratigraphy and Sedimentology Researches, v. 27(2), p. 1-26 (in Persian).
James, G.A. and Wynd, J.G., 1965. Stratigraphic nomenclature of Iranian oil consortium agreement area: The American Association of Petroleum Geologists Bulletin, v. 49, p. 2182-2245.
Kavoosi, M.A., 2014. Inorganic control on original carbonate mineralogy and creation of gas reservoir of the Upper Jurassic carbonates in the Kopet-Dagh Basin, NE Iran. Carbonates and Evaporites, v. 29, p. 419-432.
Kavoosi, M.A., Lasemi, Y., Sherkati, S. and Moussavi-Harami, R., 2009. Facies analysis and depositional sequences of the Upper Jurassic Jurassic Mozduran Formation, a reservoir in the Kopet Dagh Basin, NE Iran, Journal of Petroleum Geology, v. 32(3), p. 235-260.
Land, L.S. and Hoops, G.K., 1973. Sodium in carbonate sediments and rocks: a possible index to the salinity of diagenetic solutions: Journal of Sedimentary Petrology, v. 43, p. 614-617.
Milliman, J.D., 1975. Marine Carbonates Recent Sedimentary Carbonates, Part 1.
Speringer-Verlag, Berlin, 375 p.
Morrison, J.O. and Brand, U., 1986. Geochemistry of recent marine invertebrates, Geoscience Canada, v. 13, p. 237-254.
Morse, J.W. and Mackenzie, F.T., 1990. Geochemistry of Sedimentary Carbonates, Development in Sedimentology, Amsterdam (Elsevier), v. 48, 707 p.
Motiei, H., 1995. Geology of Iran- Zagros Stratigraphy, Geological Survey & Mineral Explorations of Iran, 556 p (in Persian).
Motiei, H., 2003. Geology of Iran (Zagros Stratigraphy), Geological Survey & Mineral Explorations of Iran, Second Edition, 583 p (in Persian).
Mucci, A., 1988. Manganese uptake during calcite precipitation from sea water: conditions leading to the formation of a pseudokutnahorite: Geochimica et Cosmochimica Acta, v. 52, p. 1859-1868.
Nairn, A.E.M. and Alsharhan, A.S., 1997. Sedimentary Basins and Petroleum Geology of the Middle East, Elsevier.
Payros, A. and Pujalte, V., 2008. Calciclastic submarine fans: An integrated overview, Earth-Science Reviews, v. 86, p. 203-246.
Pingitore, N.R., Jr. 1978. The behavior of Zn and Mn during carbonate digenesis: theory and applications; Journal and Sedimentary Petrology, v. 18, p. 31-34.
Piryaei, A., Reijmer, J.J.G., Van Buchem, F.S.P., Yazdi-Moghadam, M., Sadouni, J. and Danelian, T., 2010. The influence of Late Cretaceous tectonic processes on sedimentation patterns along the northeastern Arabian plate margin (Fars Province, SW Iran), p. 211-251. In Leturmy, P.& Robin, C. (eds) Tectonic and Stratigraphy Evolution of Zagros and Makran during the Mesozoic–Cenozoic, Geological Society of London, Special Publications, 330 p.
Rao, C.P., 1990. Petrography, trace elements and oxygen and carbon isotopes of
Gordon Group carbonate (Ordovician), Florentine Valley, Tasmania, Australia:
Sedimentary Geology, v. 66, p. 83-97.
Rao, C.P., 1991. Geochemical differences between subtropical (Ordovician), temperate (Recent and Pleistocene) and subpolar (Permian) carbonates, Tasmania, Australia: Carbonates and Evaporites, v. 6, p. 83-106.
Rao, C.P., 1996. Modern Carbonates, Tropical, Temperate, Polar. Introduction to Sedimentology and Geochemistry, Hobart (Tasmania), 206 p.
Rao, C.P. and Adabi, M.H., 1992, Carbonate minerals, major and minor elements
and oxygen and carbon isotopes and their variation with water depth in cool, temperate carbonates, western Tasmania, Australia: Marine Geology, v. 103, p. 249-272.
Rao, C.P. and Amini, Z.Z., 1995. Faunal relationship to grain-size, mineralogy and
geochemistry in recent temperate shelf carbonates, western Tasmania, Australia:
Carbonates and Evaporites, v. 10, p. 114-123.
Rao, C.P. and Jayawardane, M.P.J., 1994. Major minerals, elemental and isotopic
composition in modern temperate shelf carbonates, eastern Tasmania, Australia:
implications for the occurrence of extensive ancient non-tropical carbonates: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 107, p. 49-63.
Salehi, M.A., Adabi, M.H., Ghalavand, H. and Ghobishavi, A., 2007. Reconstruction of the sedimentary environment and the petrographic and geochemical evidence for the original aragonite mineralogy of Lower Cretaceous carbonates (Fahliyan Formation) in the Zagros sedimentary basin, Iran: 13th Bathurst Meeting of Carbonate Sedimentologists, UK. (Poster).
Sarfi, M., Ghasemi-Nejad, E., Mahanipour, A., Yazdi-Moghadam, M. and Sharifi, M., 2015. Integrated biostratigraphy and geochemistry of the lower Cretaceous Radiolarian Flood Zone of the base of the Garau Formation, northwest of Zagros Mountains, Iran. Arabian Journal of Geosciences, v. 8(9), p. 7245-7255.
Sepehr, M., and J.W. Cosgrove, 2004, Structural framework of the Zagros Fold-Thrust Belt, Iran: Marine and Petroleum Geology, v. 21, p. 829-843.
Schlanger, S.O., 1988. Strontium storage and release during deposition and diagenesis of marine carbonates related to sea-level variations. In Physical and chemical weathering in geochemical cycles (p. 323-339). Springer, Dordrecht.
Shanmugam, G. and Benedict III, G.L., 1983. Manganese distribution in the carbonate fraction of shallow to deep marine lithofacies, Middle Ordovician, eastern Tennessee, Sedimentary Geology, v. 35, p. 159-175.
Sharland, P.R., Archer, R., Casey, D.M., Davis, R.B., Hall, S.H., Heward, A.P., Horbury, A.D. and Simmons, M.D., 2001. Arabian plate sequence stratigraphy. GeoArabia Special Publication 2, Gulf Petro Link, Bahrain, 371 p.
Sibley, D.F. and Gregg, J.M., 1987. Classification of dolomite rock textures, Journal of sedimentary Research, v. 57(6), p. 967-975.
Stocklin, J., 1968. Structural history and tectonics of Iran: a review: American Association of Petroleum Geologists Bulletin, v. 52, p. 1229-1258.
Stoll, H.M., Schrag, D.P. and Clemens, S.C., 1999. Are seawater Sr/Ca variations preserved in Quaternary foraminifera?. Geochimica et Cosmochimica Acta, v. 63(21), p. 3535-3547.
Thiede, J. and Junger, B., 1992. Faunal and floral indicators of ocean coastal upwelling (NW African and Peruvian continental margins), Geological Society Special Publication, v. 64, p. 47-76.
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Goddris, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G., and Strauss, H., 1999. 87Sr/86Sr, δ 13C 113 and δ18O evolution of Phanerozoic seawater, Chemical Geology, v. 161, p. 59-88.
Veizer, J., 1983. Trace elements and isotopes in sedimentary carbonates. Reviews in Mineralogy, v. 11, p. 265-300.
Wierzbowski, H. and Joachimiski, M., 2007. Reconstruction of late Bajocian-Bathonian marine paleoenvironments using carbon and oxygen isotope ratios of calcareous fossils from the Polish Jura Chain (central Poland), Paleogeography, Palaeoclimatology, Paleoecology, v. 254, p. 523-540.
Wilson, J., 1975. Carbonate Facies in Geological history, Springer, 471 p.
Winefield, P.R., Nelson, C.S. and Hodder, A.P.W, 1996. Discriminating temperate carbonates and their diagenetic environments using bulk elemental geochemistry, a reconnaissance study based on New Zealand Cenozoic limestones. Carbonates and Evaporites, v. 11, p. 19-31.
Zolfaghari, Z., Foroughi, F., Ghasemi-Nejad, E. and Yazdi-Moghadam, M., 2016. Biostratigraphy and paleoenvironmental studies of the Garau Formation in Well A, Central Lurestan, Northwest of Zagros, Scientific Semiannual Journal Sedimentary Facies, v. 9(1), p. 91-106 (in Persian).