پایش تغییرات پوشش سطح زمین در راستای تخریب سرزمین (MODIS land cover product 2001-2013): محدوده‌ی جغرافیایی استان ایلام

نوع مقاله : علمی -پژوهشی

نویسندگان

1 گروه جغرافیای طبیعی، دانشکده جغرافیا و برنامه‌ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 گروه منابع طبیعی، دانشکده منابع طبیعی، دانشگاه یزد، یزد، ایران

3 گروه جغرافیا، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

چکیده

مسئله­ی تخریب سرزمین یکی از مهم­ترین مشکلات زیست محیطی در سراسر جهان است. روش مطالعه بر پایه مطالعات میدانی و تجزیه و تحلیل تولیدات (MCD12Q1)MODIS landcover-500m از سال 2001 تا 2013 با هدف پایش تغییرات پوشش سطح زمین در‌ راستای تخریب سرزمین در استان ایلام صورت گرفته است. نتایج نشان می‌دهد که (کد‌های2، 3، 4، 11، 14 و 255)، در طول دوره زمانی 13 ساله در محدوده مورد مطالعه هیچ پیکسلی به خود اختصاص نداده‌اند. همچنین (کد های1، 5، 6، 8 و 9) در کل دوره حداقل مقادیر سطوح پوششی و پیکسلی یعنی به ترتیب 3، 6، 36، 23 و 13 پیکسل به خود اختصاص داده‌اند. همچنین سطوح آبی (کد صفر) در محدوده مورد مطالعه از سال 2001 تا 2013 دستخوش تغییرات افزایشی بسیار کمی بوده است. سطوح مربوط به مناطق شهری و مسکونی (کد13) هیچگونه تغییری در آن مشاهده نشد. در نهایت کدهای (7و10و12و15) به ترتیب هر کدام 564424، 8953، 47030 و443520 پیکسل یعنی 78/99 درصد از سطح منطقه را پوشش داده‌اند. به طوری که جنگل‌های درختچه‌ای باز با مقدار 564424 پیکسل و مناطق فاقد پوشش‌گیاهی با 443520 پیکسل، بیشترین مقدار پوشش سطح زمین را در منطقه به خود اختصاص داده‌اند. به­طورکلی روند تغییرات سطوح بدون پوشش‌گیاهی در طول 13 سال یک روند افزایشی را نشان می‌دهد. و این می‌تواند یک موضوع نگران کننده به لحاظ تخریب سرزمین ‌باشد. که باید با جدیت مورد توجه قرار گیرد. در مقابل روند تغییرات پهنه‌های جنگلی درختچه‌های باز در طول دوره مورد مطالعه یک روند کاهشی (وسعت 53%) را نشان می‌دهد. که در مقایسه با روند افزایشی سطوح فاقد پوشش‌گیاهی (60/41%) یعنی تخریب سرزمین در منطقه صورت گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Monitoring land cover changes in line with land degradation (MODIS land cover croduct 2001-2013): Ilam province geographical range

نویسندگان [English]

  • Noorallah Nikpour 1
  • Samad Fotoohi 1
  • Hossein negaresh 1
  • Seyed Zeynolabedin Hosseini 2
  • shahram Bahrami 3
1 Department of Physical Geography, Faculty of Geography and Environmental Planning, Sistan and Baluchestan University, Zahedan, Iran
2 Department of Natural Resources, Faculty of Natural Resources and Desert Studies, Yazd University, Yazd, Iran
3 Department of Physical Geography, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
چکیده [English]

IntroductionLand degradation is a global challenge that results in reduced soil fertility and eventually becomes one of the major environmental issues worldwide. The issue of land use and land cover changes by mankind is one of the most important factors of environmental change at the local and global scale which has significant implications for ecosystem health, water quality and sustainable land management (Foley et al., 2005; Lubchenco, 1998). The problem of land degradation in the Ilam province is affected by a combination of natural and anthropogenic factors, including deforestation, drought, overgrazing, intensive agriculture, increased sediment performance due to soil erosion, evaporation, dam construction and drought. These environmental problems are ultimately linked to changes in land cover and land use. Therefore, it is important to consider land cover and land-use changes to monitor environmental changes and sustainable resource management plans for fragile ecosystems such as Ilam province and provide results to area managers and planners for restoration and prevention.Materials and methodsIn this study, we used MODIS Terra Satellite Land Cover Products (MCD12Q1) to study the monitoring of land cover changes in the Ilam province for the period of 2001 to 2013. All data for the study area were mosaicked and sampled with the UTM Global Coordinate System, using the nearest neighbor sampling method. Then they were Geo-referenced and finally, on Gis-Envi software correction operations (geometric, radiometric and atmospheric) were run and then the study area was clipped. The method initially classified the images into 17 classes and then calculated the number of pixels (zeros up to 255) of each class for the duration of 13 years and mapped the trends and percentages of changes occurring to each class.Results and discussionShrub forests have begun to grow in size since 2009 and their numbers appear to have increased in the coming years. Conversely, forest-savannahs and savannas in 2001-2007 had a small area (34 pixels in total) of their own, and since 2007 species of this type have become extinct and are not observed at all, in the studied level. The water levels (code zero) in the study area underwent very little change from 2001 to 2013, and only from 2004 to 2008 did the extent of the water levels show greater values than other years. The maximum amount of water in 2005 was 29 pixels (that means, 7250000 m = 500*500*29), which is mostly related to the Karkheh and several pixels of the Simare River in the south and east of the border. But water levels appear to have increased since 2013 due to the construction of several dams in the study area. Also, the levels for urban and residential areas (Code 13) from 2001 to 2013 are consistently 159 pixels per year across the study area, and we don't see any increase or decrease in it. Finally (code 7, 10, 12 and 15), respectively, each are 564.424 and 8.953 and 47.030 and 443.520 pixels for 13 years. That is %99.78 of the area covered. Among these areas, open forest shrubs with 564,424 pixels and no vegetation areas with 443,520 pixels had the highest amount of land cover (%94.5) in the area.ConclusionAccording to the extracted map (Map No. 2) the story lacking vegetation named Code 15 which is marked yellow in the map, is mostly located in the west and southwest of the study area, including the lowland basins, namely Western Abbas plain, Eastern Abbas plain, Chenane, Abadan, Mehran, Dehloran, Salehabad, and Sumar. In some years, due to the increasing trend of land degradation, it is advancing toward the center and east of the region. Overall, the trend of changes in the amount of no vegetation levels over the past 13 years show an increase, and this can be a concerning issue in terms of land degradation. This should be seriously taken into consideration. As the maps show, there is a decreasing inclination in the trend of open shrub forest zones during the study period as well.

کلیدواژه‌ها [English]

  • MODIS Sensor
  • Land degradation
  • Land cover (LC)
  • Ilam province
  1. -حسین‌زاده، م.م.، براتی، غ. و صابر نیا، ز.، 1393. اثرات تغییرات پوشش زمین و کاربری اراضی بر فرسایش بادی و وقوع روزهای غبارآلود در منطقه شهریار، پژوهش‌های دانش زمین، شماره 17، ص 88-76.
  2.  
  3.  
  4. -Abercrombie, S.P. and Friedl, M.A., 2016. Improving the Consistency of Multitemporal Land Cover Maps Using a Hidden Markov Model, IEEE Transactions on Geoscience and Remote Sensing, v. 54(2), p. 703-713.
  5. -Asner, G.P. and Lobell, D.B., 2000. A Bio geophysical approach for automated SWIR unmixing of soils and vegetation. Remote Sensing of Environment, v. 74, p. 99-112.
  6. -Badreldin, N., Frankl, A. and Goossens, R., 2014. Assessing the spatiotemporal dynamics of vegetation cover as an indicator of desertification in Egypt using multi-temporal MODIS satellite images, Arabian Journal of Geosciences, v. 7(11), p. 4461-4475.
  7. -Bartholome, E. and Belward, A., 2007. GLC, 2000A new approach to global land cover mapping from Earth observation data, International Journal of Remote Sensing, 2007, v. 26, p. 1959-1977. DOI:10.1080/0143116 0412331291297.
  8. -Bicheron, P., Defourny, P., Brockmann, C., Schouter, L., Vancutsem, C., Huc, M., Bontemps, S., Leroy, M., Achard, F. and Herold, M., 2008. GLOBCOVER Products Report Description and Validation Report; MEDIAS: Toulouse, France, p. 1-150.
  9. -Boyd, D.S., Foody, G.M., Curran, P.J., Lucas, R.M. and Honzak, M., 1996. An assessment of Landsat TM middle and thermal infrared wavebands for the detection of tropical forest regeneration, International Journal of Remote Sensing, v. 17, p. 249-261.
  10. -Carlos, C., Simon, H. and Mc Michael, A., 2005. Millennium Ecosystem Assessment (MEA), Ecosystems and human well-being; synthesis, Washington, DC; World Resources Institute, Island Press.
  11. -Cohen, W.B., Maiersperger, T.K., Gower, S.T. and Turner, D.P., 2003. an improved strategy for regression of biophysical variables and Landsat ETM + data, Remote Sensing of Environment, v. 84, p. 561-571.
  12. -Collins, J.B. and Woodcock, C.E., 1999. Geostatistical estimation of resolution-dependent variance in remotely sensed images, Photogrammetric Engineering and Remote Sensing, v. 65, p. 41-50.
  13. -Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B. and Lambin, E., 2004. Digital change detection methods in ecosystem monitoring: a review, International of thematic mapper data e the TM tasseled cap, Transactions on Geoscience and Remote, v. 25, p. 1565-1596.
  14. -Di Gregorio, A., 2005. Land cover classification system: classification concepts and user manual: LCCS, Number 8. Food & Agriculture Organization, Rome, Italy.
  15. -Dimyati, M., Mizuno, K., Kobayashi, S. and Kitamura, T., 1996. An analysis of land use/ cover change using the combination of MSS Landsat and land use map - a case study in Yogyakarta, Indonesia, International Journal of Remote Sensing, v. 17, p. 931-944.
  16. -Diouf, A. and Lambin, E., 2001. Monitoring land-cover changes in semiarid regions: remote sensing data and field observations in the Ferlo, Senegal, Journal of Arid Environments, v. 48, p. 129-148.
  17. -Dowson, T.P., North, P.R.J., Plummer, S.E. and Curran, P.J., 2003. Forest ecosystem chlorophyll content: implications for remotely sensed estimates of net primary productivity, International Journal of Remote Sensing, v. 24, p. 611-617.
  18. -Drake, N.A. and Vafeidis, A., 2004. A review of European Union-funded research into the monitoring and mapping of Mediterranean desertification, Advances in Environmental Monitoring and Modelling, v. 1(4), p. 1-15.
  19. -Dregne, H.E., 2002. Land Degradation in the Drylands, Arid Land Research and Management, v. 16, p. 99-132.
  20. -Dwivedi, R.S., Kumar, A.B. and Tewari, K.N., 1997. the utility of multi-sensor data for mapping eroded lands, International Journal of Remote Sensing, v. 18, p. 2303-2318.
  21. -Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G. and Carpenter, S.R., 2005. Global consequences of land use, Science, v. 309, p. 570-574.
  22. -Friedl, M.A., McIver, D.K., Hodges, J.C.F., Zhang, X.Y., Muchoney, D., Strahler, A.H., Woodcock, C.E., Gopal, S., Schneider, A., Cooper, A., Baccini, A., GAO, F. and Schaaf, C., 2002 Global land cover mapping from MODIS: algorithms and early results, Remote Sensing of Environment, v. 83, p. 287-302.
  23. -Friedl, M., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A. and Huang, X., 2010. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sensing of Environment, v.114, p. 168-182.
  24. -Friedl, M.A., 2010. “MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets,” Remote Sensing of Environment, v. 114(1), p. 168-182.
  25. -Gemmell, F., Vajo, J. and StrandStrom, M., 2001. Estimating forest cover in a boreal forest test site using thematic mapper from two dates, Remote Sensing of Environment, v. 77, p. 197-211.
  26. -Gilabert, M.A., Garcia-Haro, F.J. and Melia, J., 2000. a mixture modeling approach to estimate vegetation parameters for heterogeneous canopies in remote sensing, Remote Sensing of Environment, v. 72, p. 328-345.
  27. -Giri, C., Pengra, B., Long, J. and Loveland, T., 2013. Next generation of global land cover characterization, mapping, and monitoring, International Journal of Applied Earth Observation and Geoinformation, v. 25, p. 30-37.
  28. -Heikkonen, J. and Varfis, A., 1998. Land cover use classification of urban areas: a remote sensing approach, International Journal of Pattern Recognition and Artificial Intelligence, v. 12, p. 475-489.
  29. -Jin, S. and Sader, S.A., 2006. comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances, Remote Sensing of Environment, v. 94, p. 364-372.
  30. -Kaptue Tchuente, A.T., Roujean, J.L. and Faroux, S., 2010. ECOCLIMAP-II: An ecosystem classification and land surface parameters database of Western Africa at 1 km resolution for the African Monsoon Multidisciplinary Analysis (AMMA) project, Remote Sensing of Environment, v. 114, p. 961-976.
  31. -Kiage, L.M., Liu, K.B., Walker, N.D., Lam, N. and Huh, O.K., 2007. 'Recent land-cover/use change associated with land degradation in the Lake Baringo catchment, Kenya, East Africa: evidence from Landsat TM and ETM+', International Journal of Remote Sensing, v. 28(19), p. 4285-4309. http://dx.doi.org/10.1080 01431160701241753.
  32. -Latham, J., Cumani, R., Rosati, L. and Bloise, M., 2014. Global Land Cover SHARE (GLC SHARE); FAO: Rome, Italy, 40 p.
  33. -Li, Y., Yu, H.Q., Zhang, Y.Z., Nyamdavaa, B. and Liu, G.Q., 2014. Use of Fallout Caesium-137 to Evaluate the Effectiveness of the FAO-LADA Approach for Assessing Soil Erosion-Induced Land Degradation in the Chinese Loess Plateau, Food and Agriculture Organization of the United Nations, Rome, p. 119-123.
  34. -Lin, H., Wang, J., Jiac, X., Boa, Y., Wang, D. and Wang, Z., 2008. Evaluation of MODIS Land Cover Product of East China, Published in: IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium, DOI: 10.1109/IGARSS.2008.4779834.
  35. -Lopes, P., Lourenço, P., Carvalhais, N. and Seixas, J., 2004. MODIS Land Cover Product Validation in the Iberian Peninsula, Published in: IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium, Proceedings (IEEE Cat. No.03CH37477), p. 1733-1735, DOI: 10.1109/ IGARSS .2003.1294233.
  36. -Lubchenco, J., 1998. Entering the century of the environment; a new social contract
  37. for science, Science, 279, p. 491-497.
  38. -Metternicht, G.I. and Zinck, J.A., 1998. evaluating the information content of JERS-1 SAR and Landsat TM data for discrimination of soil erosion features, ISPRS Journal of Photogrammetry and Remote Sensing, v. 53, p. 254-265.
  39. -Mishra, J.K., Joshi, M.D. and Devi, R., 1994. Study of desertification process in Aravalli environment using remote sensing techniques, International Journal of Remote Sensing, v. 15, p. 87-94.
  40. -Moran, M.S., Clarke, T.R., Inoue, Y. and Vidal, A., 1994. estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index, Remote Sensing of Environment, v. 49, p. 246-263.
  41. -Muttitanon, W. and Trepathi, N.K., 2005. Land use/land cover changes in the coastal zone of Ban Don Bay, Thailand using Landsat 5 TM data, International Journal of Remote Sensing, v. 26, p. 2311-2323.
  42. -NASA (National Aerospace Authority), 2014. Moderate-resolution imaging spectro radiometr (MODIS). Online at
  43. http://modis.gsfc.nasa.gov/about/media/modis_brochure .pdf. Accessed 27 May 2014.
  44. -Nemani, R.R., Pierce, L., Running, S. and Band, L., 1993. Forest ecosystem processes at the watershed scale: sensitivity to remotely-sensed leaf area index estimates, International Journal of Remote Sensing, v. 14, p. 2519-2534.
  45. -Park, J.Y. and Suh, M.S., 2014. Characteristics of MODIS land-cover data sets over Northeast Asia for the recent 12 years (2001-2012), Korean Journal of Remote Sensing, v.30(4), p. 511-524. http://dx.doi.org/ 10.7780/kjrs.2014.30.
  46. -Prince, S.D., 2002. Spatial and Temporal Scales for Detection of Desertification, In; Global Desertification; Do Humans Cause Deserts? Ed. Reynolds, J.F. and Stafford Smith D.M. Dahlem University Press, p. 23-40.
  47. -Rahdari, G.R., Rahdari, M.R., Fakhireh, A.A., Shahryari, A.R. and Khosravi, H., 2013. GIS-based Monitoring and EWSs of Desertification (Case study; southeastern of Iran), International Journal of Advanced Biological and Biomedical Research, v. 1(10), p. 1185-1198.
  48. -Salvati, L. and Zitti, M., 2008. Regional convergence of environmental variables; empirical evidences from land degradation, Ecological Economics, v. 68(1), p. 162-168.
  49. -Serveney, A. and Prat, C., 2003. Erosion extension of indurated volcanic soils of Mexico by aerial photographs and remote sensing analysis, Geoderma, v. 117, p. 54-60.
  50. -Seto, K.C., Woodcock, C.E., Song, C., Huang, X., Lu, J. and Kaufmann, R.K., 2002. Monitoring land-use change in the Pearl River Delta using Landsat TM, International Journal of Remote Sensing, v. 23, p. 1985-2004.
  51. -Skole, D. and Tucker, C.J., 1993. Tropical deforestation and habitat fragmentation in the Amazon: Satellite data from 1978–1988. Science, v. 260, p. 1905-1910.
  52. -Sulla-Menashe, D. and Friedl, M.A., 2018. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product,
  53. https://lpdaac.usgs.gov/dataset_discovery/modis/modi sproductstable/mcd 12q1.
  54. -Sulla-Menashe, D., Friedl, M.A., Krankina, O.N., Baccini, A., Woodcock, C.E., Sibley, A., Sun, G., Kharuk, V. and Elsakov, V., 2011. Hierarchical mapping of Northern Eurasian land cover using MODIS data. Remote Sensing of Environment, v. 115(2), p. 392-403.
  55. -Tieszen, L.L., Reed, B.C. and Dejong, D.D., 1997. NDVI, C3 and C4 production, and distributions in Great Plains grassland land cover classes, Ecological Applications, v. 7, p. 59-78.
  56. -Townsend, P.A., 2002. Relationships between forest structure and the detection of flood inundation in forested wetlands using C-band SAR, International Journal of Remote Sensing, v. 23, p. 443-460.
  57. -Vandandorj, S., Gantsetseg, B. and Boldgiv, B., 2015. Spatial and temporal variability in vegetation cover of Mongolia and its implications, Journal of Arid Land, v. 7(4), p. 185-204.
  58. -Vintrou, E., Desbrosse, A., Begue, A., Traore, S., Baron, C. and Lo Seen, D., 2012. Crop area mapping in West Africa using landscape stratification of MODIS time series and comparison with existing global land products, International Journal of Applied Earth Observation and Geoinformation, v. 14, p. 83-93.
  59. -Wilson, E.H. and Sader, S.A., 2002. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment, v. 80, p. 385-396.
  60. -Wulder, M.A., White, J.C., Bentz, B.J. and Ebata, T., 2006. Aaugmentingthe existing survey hierarchy for mountain pine beetle red-attack damage with satellite remotely sensed data, The Forestry Chronicle, v. 82, p. 187-2002.