بررسی توان هیدروکربن‌زایی و ارتباط پرتو اورانیوم با محتوای کربن‌آلی در سازندگورپی، برش‌های سیاه‌کوه دهلران و کوه‌گورپی – زاگرس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

2 مدیریت اکتشاف شرکت ملی نفت، تهران، ایران

چکیده

در این تحقیق سازندگورپی با سن کامپانین تا دانین، در برش یال‌جنوبی ‌سیاه‌کوه دهلران و یال‌‌شمالی کوه‌گورپی بررسی شده است. هدف از این پژوهش بررسی توان هیدروکربن‌زایی و میزان بلوغ حرارتی سازندگورپی براساس پارامترهای حاصل از پیرولیز راک­اول به همراه استفاده از داده‌های گامای سطحی، جهت بررسی نسبت اورانیوم به کربن‌آلی (U / TOC) می‌باشد. ضخامت سازندگورپی در برش سیاه‌کوه 122 متر و در برش کوه‌گورپی 305 متر است. براساس نتایج به دست آمده از پیرولیز راک­ اول (34 نمونه برداشت شده) از سازندگورپی، این سازند از دیدگاه توان هیدروکربن‌زایی در برش سیاه‌کوه، در محدوده ضعیف و در برش کوه‌گورپی در محدوده ضعیف تا متوسط قرار می‌گیرد. مواد آلی موجود در نمونه‌های سازندگورپی در برش سیاه‌کوه از نوع III و II/III و مواد آلی موجود در برش کوه‌گورپی غالبا از نوع II/III و III می‌باشند. مواد آلی موجود در این نمونه‌ها برجا بوده و براساس میزان بلوغ حرارتی نمونه‌های مورد مطالعه، سازند‌گورپی در برش‌های سیاه‌کوه و کوه‌گورپی بالغ و مربوط به پنجره نفت‌زایی و مرحله اصلی تولید هیدروکربن می‌باشد. همچنین بر اساس داده‌های اورانیوم برداشت شده توسط دستگاه پرتونگار گامای سطحی در مقایسه با نتایج کربن‌آلی، مشخص شد که در برش سیاه‌کوه، با افزایش اورانیوم میزان کربن‌آلی کاهش می‌یابد. این رابطه معکوس می‌تواند بر اثر ارتباط اورانیم با حضور ترکیبات فسفاتی و گاها گلوکونیت (نه حضور آن در کربن آلی) بوده باشد. در برش‌ کوه‌گورپی رابطه مستقیم بین تمرکز ماده آلی و مقدار اورانیوم مشاهده شد، فراوانی اورانیوم اغلب توسط کربن آلی کنترل شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of hydrocarbon generation potential and the relationship between uranium and organic carbon content in Gurpi Formation, Siah-Kuh of Dehluran and Kuh-e-Gurpi sections –Zagros

نویسندگان [English]

  • َAli Mobasheri 1
  • Mahboubeh Hosseini-Barzi 1
  • Abbas Sadeghi 1
  • Mohammad Ali Kavosi 2
1 Department of Geology, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
2 Exploration Directorate, National Iranian Oil Company, Tehran, Iran
چکیده [English]

Extended Abstract
Introduction
Unlike similar sedimentary conditions in the Lower Cretaceous, the Upper Cretaceous sediments of Iran do not have the same facies features. Therefore, in this study, we try to study the sedimentary environment and microfacies. By using data and geochemical methods of Upper Cretaceous sediments, valuable information about the environment and conditions of formation and primary mineralogy of Upper Cretaceous sediments of Dombak-kuh are achieved.
Materials and Methods
In Dombak-kuh section, sampling has been done based on lithological and facies changes in the perpendicular direction towards the layers and at distances of less than 0.5 m to more than 2.5 m. These sections were stained with red alizarin solution and potassium ferrocyanide to distinguish calcite mineralogy from dolomite as well as iron content and the amount of iron in it by Dickson method (Dickson, 1965). The classification and naming of rocks is based on Dunham's method (Dunham, 1962). In sample naming, an attempt has been made to include all major allocations in sample naming in order of frequency. The percentage of abundance was obtained by comparing with Baccelle and Bosellini (1965) comparison tables. The known facies have been compared with the Flugel (2010) facies belt. In presenting the sedimentary model, the terms used in Burchett and Wright (1992) have been used.
Results and Discussion
Petrographic studies of this sections revealed 11 microfacies, with 2 microfacies from tidal flat, 1 microfacies from lagoon, 1 microfacies from shoal and 7 microfacies from open marine. All of them belonged to carbonate ramp and are mentioned hereforth: 1. Dolomicrites – Dolomicrosparaite 2. Intraclast Grainstone3.Bioclact Wackestone4. Bioclast Pelloidal Grainston 5. Oligosteginids Packstone6.Nezzazatinella, Dictyoconella Wackestone-Packston 7. Lenticulina/Marginotruncana/ Oligosteginids Wackestone-Packstone 8. Heterohelix /Globotruncana/Macroglobigerielloides Wackestone 9. Oligosteginids/ Macroglobigerielloides / Heterohelix Packstone 10. Heterohelix /Globotruncana/Marginotruncana packstone 11. Globotruncana/ Heterohelix  /Macroglobigerielloides Wackestone-packstone.
 The characteristics of these deposits indicate that the sedimentary environment was a ramp (hemocline). The absence of calcite turbidite deposits, fall structures, and large reef and oncoid and piezoidal dams confirm the carbonate ramp environment. The results of elemental analysis and plotting of these values against each other indicate that the Upper Cretaceous sediment limestones had primary aragonite mineralogy. The plotting of Mn values against Sr / Ca indicates a semi-closed to open diagenetic environment with a high water/rock ratio.
Conclusion
According to the studies carried out in the Dombak-kuh region, the Upper Cretaceous sediments (Cenomanian-Campanian) have a thickness of 327.7 m, the lower boundary of which is the Tizkuh Formation and is of a steep type, and its upper boundary is a fault which cuts through. Cenomanian sediments, which are 54.26 m thick, start with a progressive conglomerate, and then thoronine sediments, which are 22.85 m thick, first with thick-layered limestone and then with chert limestone, and then with Oligosthenic limestones change the facies and settle on it. Kenyasin sediments with a thickness of 19.85 m with a combination of oligoesterated limestones followed by Santonin sediments with a thickness of 182.80 m and then Campanian sediments with a thickness of 48.5 m form the Upper Cretaceous stratigraphic sequence. . In these sediments, 11 micro-facies were identified, which include tidal zone with 2 micro-losses, lagoon with 1 micro-loss, a dam with 1 micro-loss and open sea with 7 micro-losses. The characteristics of these deposits indicate that the sedimentary environment was a ramp (hemocline). The absence of calcite turbidite deposits, fall structures, and large reef and oncoid and piezoidal dams confirm the carbonate ramp environment. The results of elemental analysis and mapping of these values together indicate that the Upper Cretaceous sediments in this section have an aragonite primary compound, which is placed in a semi-closed to semi-open diagenetic region with a high proportion of water to rock (W/R).
 

کلیدواژه‌ها [English]

  • Gurpi Formation
  • Hydrocarbon generation
  • Kuh-e-Gurpi
  • Siah-Kuh
  • uranium
-آقانباتی، ع.، 1383. زمین­شناسی ایران، سازمان زمین­شناسی و اکتشافات معدنی کشور، تهران، ایران، 586 ص.
-پاریاب، م. و کمالی، م.ر.، 1385. طیف سنجی پرتو اورانیوم به منظور تعیین  TOCسازندهای پابده و گورپی در یکی از میادین واقع درجنوب غرب ایران، یازدهمین کنگره ملی مهندسی شیمی ایران تهران، دانشگاه تربیت مدرس.
-مطیعی، ه.، 1382. زمین­شناسی ایران، چینه­شناسی زاگرس، سازمان زمین­شناسی و اکتشافات معدنی کشور، تهران، ایران، 556 ص.
-موسوی، م.ح.، کمالی، م.ر.، عبدل زاده، س.، احمدی، ا. و کعبی مفرد، ا.، 1391. ژئوشیمی آلی سنگ­های منشاء کرتاسه بالایی (سازند گورپی) و پالئوژن (سازند پابده) در میدان نفتی پرسیاه، شمال باختری ایذه، پژوهش­های چینه­نگاری و رسوب‌شناسی، دوره 28، شماره 4، ص 1-24.
-رفیعی، ب.، اربابی، م.، محسنی، ح. و بیاتی، م.، 1392.  ژئوشیمی آلی، بلوغ حرارتی و پتانسیل هیدروکربن‌زایی سازند گورپی، ازگله، شمال غرب کرمانشاه، رسوب شناسی کاربردی، دوره 1، شماره 2، ص 29-37.
-صادقی، م.، کمالی، م.، قوامی ریابی، ر. و قربانی، ب.، 1393. ارزیابی ویژگی­های ژئوشیمیایی مواد آلی سازندهای پابده و گورپی میدان نفتی نصرت در جنوب خاور خلیج فارس با استفاده از پیرولیز راک‌ایول 6 و کروماتوگرافی گازی، فصلنامه علوم زمین، زمستان 93، سال 24، شماره 94، ص 3-317.
-صفائی فاروجی، م.، رحیم پوربناب، ح. و قربانی، ب.، 1398. ارزیابی ژئوشیمیایی و توان هیدروکربن زایی سازندهای پابده و گورپی در میدان نفتی گچساران، با استفاده از روش­های پیرولیز راک‌ایول و پتروگرافی مواد آلی، ماهنامه علمی اکتشاف و تولید نفت و گاز، شماره 156، ص 45-52.
-قاضوی، س.، رضایی، س.، سحابی، ف. و معماریان، ح.، 1390. ارزیابی پتانسیل سنگ‌های منشأ هیدروکربوری احتمالی با استفاده از مطالعات ژئوشیمیایی در منطقه ازگله (غرب کرمانشاه)، نشریه مهندسی معدن، دوره هششم، شماره 11، ص 1-11.
 
 
 
-Aghanabati, S.A., 2004. Geology of Iran. Ministry of industry and mine geological survey of Iran, 586 p.
-Al - Ameri, T.K., Al-Khafaji, A.J. and Zumberge, J., 2009. Petroleum System Analysis of the Mishrif Reservoir in the Ratawi, Zubair, North and South Rumaila Oil Fields, Southern Iraq: GeoArabia, v. 14, p. 91-108.
-Ala, M.A., Kinghorn, R.R.F. and Rahman, M., 1980. Organic geochemistry and source rock characteristics of the Zagros petroleum province, southwest Iran. Journal of Petroleum Geology, v. 3(1), p. 61-89.
-Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American Journal of Science, v. 304, p. 1-20.
-Alavi, M., 2007. Structures of the Zagros fold-thrust belt in Iran. American Journal of Science, v. 307, p. 1064-1095.
-Alavi, M., 2008. Structures of the Zagros fold-thrust belt in Iran; American Journal of Science, v. 307, p. 1064-1095.
-Asadi Mehmandosti, E., Adabi, M.H.A., Bowden, S. and Alizadeh, B., 2015. Geochemical investigation, oil–oil and oil–source rock correlation in the Dezful Embayment, Marun Oilfield, Zagros, Iran. Marine and Petroleum Geology, v. 69, p. 619-660.
Barker, C., 1974. "Pyrolysis techniques for source rock evaluation", AAPG Bullrtin, v. 58, p. 2349-2361.
-Behar, F., Beaumont, V. and Penteado, H.L. and De, B., 2001. Rock-Eval 6 Technology: Performances and Developments: Oil & Gas Science and Technology - Rev. IFP, v. 12, p. 111-134.
-Bell, K.G., Goodman, C. and Whitehead, W.L., 1940. Radioactivity of sedimentary rocks and associated petroleum. AAPG Bull, v. 24, p. 1529-1547.
-Berberian, M. and Kings, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, v. 18, p. 210-265.
-Bordenave, M.L. and Burwood, R., 1990. Source rock distribution and maturation in the Zagros orogenic belt: Provenance of the Asmari and Bangestan reservoir oil accumulations. Organic Geochemistry, v. 16(1-3), p. 369-387.
-Bordenave, M.L. and Huc, A.Y., 1995. The Cretaceous source rocks in the Zagros Footh illsof Iran: an example of a large size intracratonic basin, Rev. Inst. Fr. Pet., p. 727-753.
-Bordenave, M.L. and Hegre, J.L., 2010. Current distribution of oil and gas fields in the Zagros Fold belt of Iran and contiguous offshore as the result of petroleum systems. Geological Society, London, Special Publications, v. 330, v. 291-353.
-Bordenave, M.L. and Huc, A.Y., 2010. The Cretaceous source rocks in the Zagros foothills of Iran. Revue de l’Institut Fraçais du Pétrol, v. 50, p. 727-753.
-Buchardt, B., Clausen, J. and Thomsen, E., 1986. Carbon isotope composition of Lower Paleozoic kerogen: effects of maturation. Organic Geochemistry, v. 10, p. 127-134.
-Correia, G.C., Duarte, L.V., Pereira, A. and Silva, R.L., 2012. Outcrop gamma-ray spectrometry: pplications to the Sinemurian- Pliensbachian organic-rich facies of the Lusitanian basin (Portugal).
-Dahl, B., Bojesen-Koefoed, J., Holm, A., Justwan, H., Rasmussen, E. and Thomsen, E., 2004. "A new approach to interpreting Rock-Eval S2 and TOC data for kerogen quality assessment", Organic Geochemistry, v. 35(11- 12), p. 1461-1477.
-Espitalie, J., Deroo, G. and Marquis, F., 1985. "La pyrolyse Rock-Eval et ses applications. Première partie", Rock-Eval Pyrolysis and Its Applications (Part One), Oil & Gas Science and Technology-Rev. IFP, v. 40(5), p. 563-579.
-Espitalie, J., Marquis, F. and Barsony, v., 1984. Geochemical logging. In: K. J. Voorhees (Eds), Analytical Pyrolysis: Techniques and applications, Butterworths, Boston, p. 276-304.
-Espitalie, J.J.L., Laporte, M., Madec, F., Marquis, P., Leplat, J., Paulet, J. and Boutefeu, A., 1977. Methode rapide de caracterisation des roches meres, de leur potentiel petrolier et de leur degree d'evolution: Revue de l'Institut Francais du Petrole, v. 32, p. 23-42.
-Eyre1, T.S., Eaton, D.W., Garagash, D.I., Zecevic, M. and Venieri, M., 2019. Ronald Weir1, Donald C. Lawton12019. The role of aseismic slip in hydraulic fracturing–induced seismicity. Science Advances. DOI: 10.1126/sciadv. aav7172.
-Fiet, N. and Gorin, G.E., 2000. Gamma-ray spectrometry as a tool for stratigraphic correlations in the carbonate-dominated, organic-rich, pelagic Albian sediments in Central Italy, Eclogae Geologicae Helvetia, p. 175-181.
-Ghazavil, S., Memarian, H., Rezaei, S. and Sahabi, F., 2011. Assessment of Probable Hydrocarbon Source Rock Potentiality using Geochemical Studies in Azgaleh Region (West of Kermanshah), Iranian Journal of Mining Engineering, v. 6(11), p. 1-17.
-Hassan, M., Husen, A. and Combaz, A., 1976. Fundamentals of the differential gamma log interpretation technique. Transactions of SPWLA 17 th Annual Logging Symposium, June 9-12, Paper H.
-Heidarifard, M., 2011. TOC predication from well log using Δ logr method and neural network technique in the Northern Dezful Embayment, Zagros, Iran, The 2nd South Asain Geoscience Conference and Exhibition, GEOIndia, Gearter Noida, New.
-Huang, B., Xiao, X. and Zhang, M., 2003. Geochemistry, grouping and origins of crude oils in the Western Pearl River Mouth Basin, offshore South China Sea: Organic Geochemistry, v. 34, p. 993-1008.
-Huang, R., Wang, Y., Cheng, S., Liu, S. and Cheng, L., 2015. Selection of logging-based TOC calculation methods for shale reservoirs: A case study of the Jiaoshiba shale gas field in the Sichuan Basin. Research Institute of Sinopec Exploration Southern Company, Chengdu, Sichuan 610041, China.
-Hunt, J.M., 1996. Petroleum Geochemistry and Geology (Second Edition): W.H. Freeman and Company, New York, 743 p.
-Jolanta, K. and Lidia, D., 2016. Geological interpretation of spectral gamma ray (SGR) logging in selected boreholes, Oil and Gas Institute – National Research Institute, NAFTA-GAZ.
-Julian, L.B., 1995. High-Resolution Outcrop Gamma-Ray Spectrometry of the Lower Lias, Southern Britain, volume 1, Thesis presented to the University of Oxford for the Degree of Doctor of Philosophy, 208 p.
-Ibrahim, W.E., Salim, A.M.A. and Sum, C.W., 2020. Mineralogical investigation of fine clastic rocks from Central Sarawak, Malaysia. J Petrol Explor Prod Technol, v. 10, p. 21-30. https://doi.org/10.1007/s13202-019-00751-0.
-Kaboli, S., 2011. Biostratigraphy and micropaleontological Studies on the surface samples collected from the Kul-e Har stratigraphic section, in South flank of Siah Kuh Anticline, Souhteast of Dehluran city, Souhtwestern Iran. Paleontological note # 810, National Iranian Oil Company, Exploration Directorate, Department of Geological and Geochemical Studies and Researches.
-Kamali, M. and Ghorbani, B., 2006. Organic geochemistry from phytoplankton to oil production, Arian press, Tehran, 318 p.
-Kobraei, M., Sadouni, J. and Rabbani, A.R., 2019. Organic geochemical characteristics of Jurassic petroleum system in Abadan Plain and north Dezful zones of the Zagros basin, southwest Iran. Journal of Earth System Science, v. 128(3), p. 50-68
-Lafargue, E., Espitalié, J., Marquis, F. and Pillot, D., 1998. Rock-Eval 6 Applications in Hydrocarbon Exploration, Production and in Soil Contamination Studies: In Revue de l'Institut Français du Pétrole, v. 53, p. 421-437.
-Lüning, S. and Kolonic, S., 2003. Uranium spectral gamma-ray response as a proxy for organic richness in black shales: Applicability and limitations. Journal of Petroleum Geology, v. 26, p. 153-174.
-Motiei, H., 1993. Geology of Iran: Stratigraphy of Zagros. Treatise on thegeology of Iran (p. 536). Tehran: Geological Survey of Iran.
-Mousavi, M.H., Kamali, M.R., Shayesteh, M., Ahmadi, A. and KaabiMofrad, A., 2012. Organic geochemistry of Upper Cretaceous (Gurpi Formation) and Paleogene (Pabdeh Formation) rocks in Persia oil field, northwest of Izeh, stratigraphic and sedimentological research, year 28, consecutive number 49, number four, Winter 2012, H 1 to 24.
-Myers, K.J. and Wignail, P.B., 1987. Understanding Jurassic organic-rich mudrocks - new concepts using gamma-ray spectrometry and paleoecology: example from Ihe Kimmeridge Clay. Dorset and the Jet Rock of Yorkshire. In: Marine Clastic Sedimentology: New Developments and Concepts. (Ed. by. J.K. Legget & G.G. Ziti a). Graham & Trotman. London, p. 172- 189.
-Page, M.M. and Kuhnel, C., 1980. Rock EvalPyroly-sis as source rock using programmed pyrolysis", AAPG Bulletin, v. 64, p. 762.
-Paryab, M. and Kamali, M.R., 2006. Uranium beam spectroscopy to determine the TOC of Pabdeh and Gurpi formations in one of the fields located in the southwest of Iran, 11th National Congress of Chemical Engineering, Tehran, TarbiatModares University.
-Peters, K.E., 1986. "Guidelines for evaluating petroleum source rock using programmed pyrolysis", American Association of Petroleum Geologists Bulletin, v. 70, p. 318-329.
-Peters, K.E. and Cassa, M.R., 1994. Applied source rock geochemistry: chapter 5—part II. Essential elements. In: Magoon LB, Dow WG (eds) The petroleum system—from source to trap, vol 60. American Association of Petroleum Geologists, Memoir, p. 93-120.
-Rabbani, A.R., 2006. Petroleum Geochemistry - Offshore SE Iran, Geochemisry International, v. 45, p. 1164-1172.
-Rafiei, B., Arbabi, M., Mohseni, H. and Bayati, M., 2013. Organic geochemistry, thermal maturity and hydrocarbon generation potential of the Gurpi Formation, Ezgeleh, NW Kermanshah, Journal of Applied sedimentary Bu-Ali Sina University, v. 1(2), p. 29-37.
-Sadeghi, M., Kamali, M.R., Ghavami Riabi, R. and Qorbani, B., 2015. Geochemical Evaluation of Organic Matter ofThePabdeh and Gurpi Formations inNosrat Oil Field, Se Persian Gulf, Using Rock-Eval Vi and Gas Chromatography, Geosciences, Winter, v. 24(94), p.  317-326.
-Safaei Farooji, M.R., Haim Pour banab, H. and Ghorbani, B., 2019. Geochemical evaluation and hydrocarbon generation potential of Pabdeh and Gurpi formations in Gachsaran oil field, using rock oolol pyrolysis methods and petrography of organic materials, Scientific Monthly of Oil and Gas Exploration and Production, 156 p.
-Schovsbo, N.H., 2002. Uranium enrichment shorewards in black shales: A case study from the Scandinavian Alum Shale, GFF -Uppsala, v. 124, p. 107-116.
-Shafizad, M., 2011. Biostratigraphy and micropaleontological studies on the surface samples collected from the Kul-e Khodā-Dād and Tal-e Hhāji-Ali stratigraphic section in Kuh-e Gurpi anticline, North of Lāli city, in Izeh zone, Souhtwestern Iran. Paleontological note # 826, National Iranian Oil Company, Exploration Directorate, Department of Geological and Geochemical Studies and Researches.
-Takin, M., 1972. Iranian geology and continental drift in the Middle East. Nature, v. 235(5334), p. 147-150.
-Tissot, B. and Espitalie, J., 1975. Thermal evolution of organic materials in sediments; application of a mathematical simulation; petroleum potential of sedimentary basins and reconstructing the thermal history of sediments, Revue de l›Institut Francais du Petrole et Annales des Combustibles Liquides, v. 30(5), p. 743-777.
-Tissot, B.P., Pellet, R. and Ungerer, P.H., 1987. Thermal History of Sedimentary Basins، Maturation Indices، and Kinetics of Oil and Gas Generation، American Association of Petroleum، Geologists Bulletin, v. 71, p. 1445-1466.
-Vigh, T., Kovács, T., Somlai, J., Kávási, N., Polgári, M. and Bíró, L., 2013. Terrestrial Radioisotopes in Black Shale Hosted Mn-Carbonate Deposit (Úrkút, Hungary). Acta Geophysica, v. 61(4), p. 831-847.
-Zelt, F.B., 1985. Natural gamma-ray spectrometry, lithofacies, and depositional environments of selected Upper Cretaceous marine mud rocks, western United States, including Tropic Shale and Tununk Member of Mancos Shale.PhD thesis, Princeton University.