اثر احتمالی تغییر اقلیم بر عملکرد محصول گندم در استان تهران

نوع مقاله : علمی -پژوهشی

نویسندگان

1 دانشگاه شهید بهشتی

2 دانشگاه آزاد اسلامی واحد شهرری

3 اداره کل هواشناسی استان تهران

چکیده

اثر تغییر اقلیم بر روی کشاورزی و امنیت غذائی  مردم یکی از مهم­ترین موضوعات مطرح در سطح جهان است. استان تهران با داشتن 60125 هکتار سطح زیرکشت گندم (سال زراعی 1389-1388) و عملکرد تولید 6/3795 تن در همین سال دارای بیشترین عملکرد تولید در بین استان­های کشور بوده است. هدف از این مطالعه ارزیابی اثر تغییر اقلیم بر عملکرد تولید محصول گندم در استان تهران است. داده­های هواشناسی 58 سال (2009-1951 میلادی) ایستگاه هواشناسی تهران (مهرآباد، ورامین، فرودگاه امام خمینی (ره)، دوشان تپه، اقدسیه) جهت انجام مطالعه انتخاب شد. پس از صحت سنجی مدل آماری ClimGen داده­های ایستگاه، داده­های اقلیمی سال­های2050–2020 میلادی وارد این مدل شد. نتایج داده­های اقلیمی به همراه متغیرهای خاکشناسی و کشاورزی مربوطه، براساس دو سناریوی تغییر اقلیمی 2A و B2 در دو حالت (1- افزایشCO2، 2- افزایش توأمCO2  و درجه حرارت) وارد مدل کشاورزی APSIM گردید. درسناریوهای مجموعه 2A و 2B ، با افزایش 2CO به تنهایی به ترتیب به میزان700 ppm و 525 ppm و بدون تغییر فرض نمودن نوسانات دما شاهد افزایش تولید به ترتیب به میزان 28% و 13% نسبت به سناریوکنترل هستیم. اما درسناریو بعدی با دخالت دادن افزایش دما به ترتیب به میزان4 و 2 درجه سانتی گراد میزان تولید نسبت به سناریوی کنترل به ترتیب10% و12% کاهش یافته است. AbstractOne of the most important issues which is dealt with across the world is effects of climate change effect on agriculture and food safety. Tehran province has the most wheat product rate among other provinces of country with having 60125 hectares under cultivation (1388-1389 harvesting year) and production rate of 3795.6 tons in the same year. So the objective of this study is to evaluate the effects of climate change on wheat production in Tehran. 58 years (1951-2009) meteorological data of Tehran weather station (mehrabad,Varamin, Imam khomini air port, Doshan tapeh, aghdasieh) was selected as a base for the study. After validating ClimGen statistic model Station data, 2020-2050 years' climate data were in put model. According to A2 and B2 climate change scenarios in two states (1. CO2 increase, 2. Simultaneous increase of CO2 and heat) the results of climate data were used by APSIM agricultural model along with related agricultural and pedological variables. In A1 and B2 scenarios, with the increase of CO2 alone and to the extent of 700 ppm and 525 ppm ignoring heat resonance the production rate increased 28% and 13% respectly rather than the control scenario. But at the other scenario by including heat increase to 4 and 2 the production falled to 10% and 12 %. Keywords: Tehran Province, Climate Change, Wheat, Climatic and Statistic Models, APSIM. 

کلیدواژه‌ها


عنوان مقاله [English]

Possible effects of climate change on wheat crop in the state of Tehran

چکیده [English]

Effects of climate change on agriculture and food security is one of the most important issues in the world. Wheat consist a high proportion of land under cultivation and is one of the most important food sources for people. Tehran province with 60,125 hectares acreage of wheat (1389-1388 season) and producing 6/3795 tones in the same year produced the highest yield among other provinces. The purpose of this study was to evaluate the effect of climate change on yield of wheat production in Tehran province. Meteorological data for 58 years (2009-1951 AD) of Tehran weather station was chosen in this study. After validation of the ClimGen statistical model for the study area, climate data of 2020 to 2050 were put into the model. Based on climate change scenarios A2 and B2 in two modes (1, increased CO2, 2- Increasing CO2 and temperature), soil variables associated with climate and agricultural data results were put into APSIM agriculture model. In complex scenarios A2 and B2, with rising CO2 levels respectively 700 ppm and 525 ppm alone and without the assumption of temperature fluctuations, production is increased by 28% and 13% respectively compared to the control scenario. But in the next scenario involving a temperature increase of 2 and 4 ° C respectively reduces production 10% and 12% compared to the control scenario. The study results of researchers who have studied on Co2 effects on plants, approve the positive impacts of CO2. Most researches show the negative impact of temperature rise to the product to which this study confirms

کلیدواژه‌ها [English]

  • Tehran Province- Climate Change- Wheat- Climatic and Statistic Models- APSIM
  1. -بنایان اول، م.، 1388. ارزیابی کارایی مدل‌های رشد و نمو گیاهان زراعی در شرایط افزایش CO2، نشریه آب و خاک (علوم و صنایع کشاورزی)، ص 115-126.
  2. -حشمدار، ف.،1390. اثر احتمالی تغییر اقلیم بر تولید گندم با تأکید بر کشت دیم در استان فارس،
  3. پایان‌نامه کارشناسی ارشد، دانشگاه آزاد اسلامی واحد تهران مرکزی.
  4. - کوچکی، ع. و زنده، ا.، 1377. آیا تغییر جهانی اقلیم گیاهان C4 را تهدید می کند؟، مجله نیوار، شماره 40، ص 65-74.
  5. -کوچکی، ع.،1373. افزایش غلظت 2CO در اتمسفر و اثرات آن بر فعالیت‌های کشاورزی، مجله نیوار، شماره 24، ص 17-22.
  6. -کوچکی، ع. و نصیری محلاتی، م.، 1387. تاثیر تغییر اقلیم همراه با افزایش غلظت 2CO بر عملکرد گندم در ایران و ارزیابی راهکارهای سازگاری، مجله پژوهش‌های زراعی ایران، جلد 6، شماره 1، ص 139-153.
  7. -محمدی، ح.، مقبل، م. و رنجبر، ف.،1389. مطالعه تغییرات بارش و دمای ایران با استفاده از مدل MAGICC SCENGEN، جغرافیا، شماره 25، ص 139-150.
  8. -Acock, B. and Allen, L. H. Jr., 1985. Crop responses to elevated carbon dioxide concentration, In: Direct effects of increasing carbon dioxide on vegetation, B. R. Strain and Cure (eds.), p. 53- 97.
  9. -Andrew. J., Ewert, F., Arnold, S., Simelton, E. and Fraser, E. 2009. Crops and climate change: progress, trends, and challenges in simulating impacts and informing adaptation, Journal of Experimental Botany, v. 60(10), p. 2775-2789.
  10. -Amthor, J.S., 2001. Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration, Field Crops Res, p. 1–34.
  11. -Anwar, M. R., O’Leary, G., McNiel, D., Hossan, H. and Nelson, R., 2007. Climate change impact on rainfed wheat in south-eastern Australia. Field crops research, v. 104, p. 139-147.
  12. -Apsim documentation, 2009. www.Apsim.info.
  13. -Batts, G. R., Ellis, R. H., Morison, J.I.L., Nkemka, P. N., Gregory, P. J. and Hadley, P., 1998. Yield and partitioning in crops of constrating cultivars of winter wheat in response to CO2 and temperature in yield studies using temperature gradient tunnels. Journal of Agricultural Science, Cambridge, v. 130 (1), p. 17-27.
  14. -Cannell, M. G. R., Grace, J. and Booth, A., 1999. Possible impacts of climatic warming on trees and forests in the United Kingdom, Forestry, p. 337-364.
  15. -Erda, L., Wei, X., Hui, J., Yinlong, X., You, L., Liping, B. and Liyong, X., 2005. Climate change impacts on crop yield and quality with Co2 fertilization in China, Phil, Trans, The Royal Society, B. v. 360, p. 2149-2154.
  16. -Evans, J. p., 2009. 21st century climate change in the Middle East, Climatic change, v. 92, p. 417-432.
  17. -Fisher, R. A., 1983. Wheat, In: Smith, W.H., Banta, S.J., (Eds.), Potential Productivity of Field Crops under Different Environments, International Rice Research Institute, Los Banos, Languna, Philippines, p. 129-154.
  18. -Ko, J., Piccinni, G. and Steglich, E., 2009. Using EPIC model to manage irrigated cotton and maize, Agriculture water management, v. 96, p. 1323-1331
  19. -Lobell, D. and Field, C, B., 2007. Globla scale climate-crop yield relationships and the impacts of recent warming, Environ, Research letter, v. 2, p. 1-12.
  20. -Ludwig, F. and Asseng, S., 2006. Climate change impacts on wheat production in a Mediterranean environment in Western Australia. Agriculture systems, v. 90, p. 159-179.
  21. -McKague, K., Rudra, R. and Ogilvie, J. 2003. ClimGen - A convenient weather generation tool for Canadian climate stations, Proc, CSAE/SCGR 2003 meeting, 6-9 July, Montreal, Quebec, p. 03-118
  22. -Luo, Y. and Mooney, H.A., 1999. Carbon dixide and environmental stress, Academic press, p. 62-64.
  23. -Ludwig, F. and Asseng, S., 2006. Climate change impacts on wheat production in a Mediterranean environment in Western Australia, Agriculture systems, v. 90, p. 159-179.
  24. -Parry, M., Rosenzweig, C., Iglesias, A., Livermore, M. and Fische, G., 2004. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob. Environ. Change, v. 14, p. 53-67.
  25. -Poorter, H. and Perez-Soba, M., 2001. The growth responses of plants to elevated CO2 under non-optimal environmental conditions, Oecologia, v. 129, p. 1-20.
  26. -Remy, M., Stefan, B., Andreas, B. and Hans, J.W., 2003. Effect of CO2 enrichment on growth and daily radiation use efficiency of wheat in relation to temprature and growth stage, European Journal of Agronomy, v. 19, p. 411-425.
  27. -Roger, S.B. and Daniel, R.K., 2009. Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency, journal of Experimental botany, v. 60, v. 1939-1951.
  28. -Tingem, M., Rivington, M., Azam- Ali, S. and Colls, J., 2007. Assessment of the ClimGen stochastic weather generator at Cameroon sites, African Journal of Environmental Science and Technology, v. 1 (4), p. 086-092.
  29. -Kimball, B. A., 1983. Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations, Agronomy Journal, v. 75, p. 779-788.
  30. -Ludwig, F. and Asseng, S., 2006. Climate change impacts on wheat production in a Mediterranean environment in Western Australia, Agriculture systems, v. 90, p. 159-179.
  31. -Semenov, M. A., Wolf, J., Evans, L. G., Eckersten, H. and Iglesias, A., 1996. Comparison of wheat simulation models under climate change. 2, Application of climate change scenarios, Climate research, v. 7, p. 271–281.
  32. -Sivakumar, M. V. K., Das, H. P. and Brunini, O., 2005. Impacts of present and future climate to variability and changeon agriculture and forestry in the arid and semi-aride tropics, Climatic Change, v. 70, p. 31-72.
  33. -Thorne, G.N. and Wood, D.W., 1987. Effects of radiation and temperature on tiller survival, grain number and grain yield in winter wheat, Annals of Botany, v. 59, p. 413-426.
  34. -Van Oijen, M., Schapendonk, A. H., Jansen, M. J. H., Pot, C. S. and Maciorowski, R., 1999. Do open-top chambers overestimate the effect of rising CO2 on plants? An analysis using spring wheat, Global Change Biology. v. 5 (4), p. 411-421.
  35. -Van Ittersum, M. K., Howden, S. M. and Asseng, S., 2003. Sensitivity of productivity and drainage of wheat cropping systems in a Mediterranean environment to changes in CO2, temperature and precipitation, Agriculture Ecosystem Environment, v. 97, p. 255-273.
  36. -Wang, E., Chen, C. and Yu, Q., 2009. Modeling the response of wheat and maize productivity to climate variability and irrigation in the North China Plain. 18th World IMACS/MODSIM congress, Cairns, Australia.
  37. -Wardlaw, I. F. and Wrigley, C. W., 1994. Heat tolerance in temperate cereals; an overview, Aust. J. Plant Physiol, v. 21, p. 695-703.
  38. -Wheeler, T. R., Batts, G. R., Ellis, R. H., Hadley, P. and Morison, J. I. L., 1996. Growth and yield of winter wheat (Triticum aesti.um) crops in response to CO2 and temperature, Journal of Agricultural Science, Cambridge, v. 127, p. 37-48.