Document Type : علمی -پژوهشی


  1. منابع
  2. -جعفریان، م. ب. و زمانی پدرام، م.، 1378. نقشه برگه یکصد‌هزار ملایر، سازمان زمین شناسی و اکتشافات معدنی کشور.
  3. -قلیچ پور، ح.، پور احمدی، م. و حسینخانی، ا.، 1391. پروژه تحقیقاتی- معدنی اکتشافات ژئوشیمیایی معدن آهنگران، 136ص.
  4. -کهنسال، ر.، 1383. نقشه و گزارش برگه یکصدهزار خنداب، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
  5. -Abrams, M. and Hook, S., 2001. ASTER User Handbook (Version 2): Jet Propulsion Laboratory, Pasadena, CA-91109, USA, 135 p.
  6. -Abdelsalam, M.G., Stern, R. J. and Berhane, W.G., 2000. Mapping gossans in arid regions with Landsat TM and SIR-C images, the Beddaho Alteration Zone in northern Eritrea: Journal of African Earth Sciences, v. 30(4), p. 903–916.
  7. -Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: New data and interpretations: Tectonophysics, v. 229, p. 211- 238.
  8. -Boardman, J. W., Kruse, F. A. and Green, R. O., 1995. Mapping target signatures via partial unmixing of AVIRIS data: Proceedings of the Fifth JPL Airborne Earth Science Workshop, JPL Publication, v. 95(1), p. 23– 26.
  9. -Clark, R.N., Swayze, G.A., Gallagher, A.J., King, T.V.V. and Calvin, W.M., 1999. The U.S. Geological Survey, digital spectral library, version 1:0.2 to3.0 microns: U.S. Geological Survey Open-file Report, p. 93–592.
  10. -Crosta, A.P. and Filho, C.R.d.S., 2003. Searching for gold with ASTER: Earth Obs Mag. v.12(5), p. 38–41.
  11. -Di Tommaso, I. and Rubinstein, N., 2007. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina: ore geology reviews sciencedirect, v. 32, p. 275–290.
  12. -Fujisada, H., 1995. Design and performance of ASTER instrument: Proceedings of SPIE, the International Society for Optical Engineering, v. 2583, p. 16–25.
  13. -Gad, S. and Kusky, T., 2006. Lithological mapping in the Eastern Desert of Egypt, the Barramiya area, using Landsat thematic mapper (TM): Journal of African Earth Sciences, v. 44, p.196–202.
  14. -Gad, S. and Kusky, T.M., 2007. ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt: Gondwana Res, v. 11(3), p. 326–335.
  15. -Gillespie, A.R., Kahle, A.B. and Walker, R.E., 1986. Color enhancement of highly correlate images, I. Decorrelation and HIS contrast stretches: Remote Sensing of Environment, v. 20, p. 209–235.
  16. -Ghasemi, A. and Talbot, C.J., 2005. A new tectonic scenario for the Sanandaj-Sirjan Zone (Iran): Journal of Asian Earth Sciences, v. 26, p. 683–693.
  17. -Hewson, R.D., Cudahy, T.J., Mizuhiko, S., Ueda, K. and Mauger, A.J., 2005. Seamless geological map generation using ASTER in the Broken Hill-Curnamona Province of Australia: Remote Sensing of Environment, v. 99, p. 159–172.
  18. -Hunt, G. R., Salisbury, J. W. and Lenhoff, C. R., 1972. Visible and near infrared Spectra of minerals and rocks, V. Halides, phosphates, arsenates, vanadates and borates: Modern Geology, v. 3, p.121– 132.
  19. -Hunt, G. R., 1977. Spectral signatures of particulate minerals in the visible and near infrared: Geophysics, v. 42(3), p. 501– 51.
  20. -Lyon, R.J.P., 1964. Evaluation of infrared spectrophotometry for compositional analysis of lunar and planetary soils, II: NASA Contractor Report, NASA CR, United States: National Aeronautics and Space Administration, 100p.
  21. -Mars, J.C. and Rowan, L.C., 2011. ASTER spectral analysis and lithologic mapping of Khanneshin carbonatite volcano, Afghanistan: Geosphere, v. 7, p.276–289.
  22. -Mohajjel, M., Fergusson, C.L. and Sahandi, M.R., 2003.Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran: Journal of Asian Earth Sciences, v. 21, p. 397–412.
  23. -Momenzadeh, M., 1976. Stratabound lead–zinc ores in the lower Cretaceous and Jurassic sediments in the Malayer–Esfahan district (west Central Iran), lithology, metal content, zonation and genesis: Unpublished PhD thesis, University of Heidelberg, 300 p.
  24. -Ninomiya, Y., Fu, B. and Cudahy, T.J., 2005. Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infared “radiance-at-sensor” data: Remote Sensing of Environment, v. 99, p. 127–139.
  25. -Ninomiya, Y., Fu, B. and Cudhy, T.J., 2006. Corrigendum to Detecting lithology with Advanced –Spaceborne Thermal Emission and Refection Radiometer (ASTER) multispectral thermal infrared radiance-at-sensor data: Remote Sensing of Environment, v. 101, p. 567.
  26. -Reichert, J., 2007. A metallogenetic model for carbonatehosted non-sulfide zinc deposits based on observations of Mehdi Abad and Iran Kouh, central and southwestern Iran :[Unpublished Ph.D. thesis], Shillong, University of Martin Luther, 129 p.
  27. -Rowan, L.C., Hook, S.J., Abrams, M.J. and Mars, J.C., 2003. Mapping hydrothermally altered rocks at Cuprite, Nevada, using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a new satellite-imaging system: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 98(5), p.1019–1027.
  28. -Rowan, L.C., Mars, J.C. and Simpson, C.J., 2006. Lithologic mapping of the Mordor, Northern Territory, Australia ultramafic complex using Advanced Spaceborne Thermal and Reflection Radiometer (ASTER) data: Remote Sensing of Environment, v. 99, p. 105–126, doi: 10.1016/j.rse.2004.11.021.
  29. -Rowan, L.C. and Mars, J.C., 2003. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data: Remote Sensing of Environment, v. 84, p. 350–366.