Persian References:
-Ahmadi, M., Dadashi Roudbari, A.A., Akbari Azirani, T. and Karami, J., 2019. The Performance of the HadGEM2-ES Model in the Evaluation of Seasonal Temperature Anomaly of Iran under RCP scenarios. Journal of the Earth and Space Physics, v. 45(3), p. 625-644.
-Ahmadi, M., Dadashi Roudbari, A. and Ahmadi, H., 2018. Analysis of daytime land surface temperature in Iran based on the MODIS sensor output, Environmental Sciences, v. 16(1), p. 47-68.
-Alijani, B., 1381. Iran's climate, 5th edition, Payam Noor University Press.
-Gavidelrahimi, Y., Farajzadehasl, M. and Alijahan, M., 2017. The Global Land-Ocean Temperature Anomalies role in changeability of Minimum Temperatures in Iran. Geography and Planning, v. 21(59), p. 243-261.
-Kamyar, A., Yazdanpanah, H. and Movahedi, S., 2018. Accuracy Evaluation of the Outputs of Regional Climate Models in Iran. Physical Geography Research Quarterly, v. 50(1), p. 161-176.
-Moradi, M., Salahi, B. and Masoodian, S.A., 2016. Land surface temperature zoning of Iran with MODIS data. Journal of Natural Environmental Hazards, v. 5(7), p. 101-116.
-Shahkooeei, E., Ghangherme, A. and Yousefi, R., 2017. An investigation of temperature anomalies of cold-year period (Area of study: Mazandaran). Geographical Planning of Space, v. 7(23), p. 207-222.
English References:
-Abbasnia, M., Tavousi, T. and Khosravi, M., 2016. Assessment of future changes in the maximum temperature at selected stations in Iran based on HADCM3 and CGCM3 models, Asia-Pacific Journal of Atmospheric Sciences, v. 52(4), p. 371-377.
-Chandola, V., Banerjee, A. and Kumar, V., 2009. Anomaly Detection: A Survey”, ACM Computing Surveys, v. 41(15), p. 1-58.
-Dai, A., Fyfe, J.C., Xie, S.P. and Dai, X., 2015. Decadal modulation of global surface temperature by internal climate variability, Nature Climate Change, v. 5(6), p. 555-559.
-García‐García, A., Cuesta‐Valero, F.J., Beltrami, H. and Smerdon, J.E., 2019. Characterization of air and ground temperature relationships within the CMIP5 historical and future climate simulations. Journal of Geophysical Research: Atmospheres, v. 124(7), p. 3903-3929.
-Giorgi, F., Jones, C. and Asrar, G.R., 2009. Addressing climate information needs at the regional level: the CORDEX framework. World Meteorological Organization (WMO) Bulletin, v. 58(3), p. 175-183.
-Kaufmann, R.K., Zhou, L., Myneni, R.B., Tucker, C.J., Slayback, D., Shabanov, N.V. and Pinzon, J., 2003. The effect of vegetation on surface temperature: A statistical analysis of NDVI and climate data. Geophysical research letters, v. 30(22), p. 1-4.
-Kendall, M., 1975. Multivariate analysis. Charles Griffin.
-Nikulin, G., Jones, C., Giorgi, F., Asrar, G., Büchner, M., Cerezo-Mota, R. and Sushama, L., 2012. Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations, Journal of Climate, v. 25(18), p. 6057-6078.
-Huang, N.E., Wu, Z., Pinzón, J.E., Parkinson, C.L., Long, S.R., Blank, K. and Chen, X., 2009. Reductions of noise and uncertainty in annual global surface temperature anomaly data, Advances in adaptive data analysis, v. 1(03), p. 447-460.
-Reiter, R.J., Tan, D.X., Zhou, Z., Cruz, M.H.C., Fuentes-Broto, L. and Galano, A., 2015. Phytomelatonin: assisting plants to survive and thrive, Molecules, v. 20(4), p. 7396-7437.
-Warnatzsch, E.A. and Reay, D.S., 2019. Temperature and precipitation change in Malawi: Evaluation of CORDEX-Africa climate simulations for climate change impact assessments and adaptation planning. Science of the Total Environment, v. 654, p. 378-392.
-Zhu, W., Lű, A. and Jia, S., 2013. Estimation of Daily Maximum and Minimum Air Temperature Using MODIS Land Surface Temperature Products, Remote Sensing of Environment, v. 130, p. 62-73.
-Zhu, X., Dong, W., Wei, Z., Guo, Y., GAO, X., Wen, X. and Chen, J., 2018. Multi‐decadal evolution characteristics of global surface temperature anomaly data shown by observation and CMIP5 models, International Journal of Climatology, v. 38(3), p. 1533-1542.