بررسی کارآیی دو روش داده محور در پیش‌بینی بارندگی ماهانه

نوع مقاله : علمی -پژوهشی

نویسندگان

1 دانشگاه تهران

2 دانشگاه ساری

چکیده

پیش‌بینی دقیق بارش باران به خصوص در مناطق خشک ‌و نیمه خشک، نقش مهمی را در مدیریت موثر منابع آب بازی می‌کند. حصول روش‌های مناسب و دقیق در پیش‌بینی بارندگی یکی از مسائل چالش‌ انگیز امروزی، در مدیریت منابع آب و مخاطرات اقلیمی است. اگرچه تحقیقات گسترده‌ای در زمینه کاربرد مدل‌های هوش محاسباتی به منظور پیش‌بینی‌های اقلیمی صورت گرفته است، اما انتخاب نوع و تعداد متغیرهای ورودی به هرکدام از این مدل‌ها همواره مدل­سازان را با مسائلی روبرو کرده است. هدف از این تحقیق، بررسی تأثیر پیش پردازش داده‌ها در انتخاب بهترین ترکیب ورودی از متغیرهای تأثیرگذار بر فرآیند بارش با استفاده از آزمون گاما برای پیش‌بینی بارش ماهانه با دو مدل رگرسیون بردار پشتیبان و برنامه­ریزی بیان ژن می‌باشد.‌ برای این منظور، از روش‌های آزمون گاما و آنالیز همبستگی برای پیش‌پردازش ورودی‌ مدل‌های مورد استفاده در این تحقیق تحت یک مطالعه موردی با استفاده از داده‌های اقلیمی ماهانه مربوط به ایستگاه سینوپتیک شیراز در طی سال‌های 1362 تا 1390 استفاده شد. کارآیی این مدل‌ها با استفاده از ضرایب تبیین، ریشه میانگین مربعات خطا و ضریب کارآیی ناش-ساتکلیف ارزیابی گردید. نتایج نشان داد که مدل ترکیبی گاما-رگرسیون بردار پشتیبان، بارندگی ماهانه را بهتر از سایر مدل‌های استفاده شده در این تحقیق پیش‌بینی می‌کند. ولی آزمون گاما نتوانست کارایی مدل برنامه‌ریزی بیان ژن را به اندازه مدل رگرسیون بردار پشتیبان بهبود بخشد. هم­چنین براساس نتایج حاصله، متغیرهای ساعات آفتابی، رطوبت نسبی، بارندگی یک ماه گذشته و دما به ترتیب جزء موثرترین متغیرها در پیش‌بینی بارندگی ماهانه می‌باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Performance Improvement of Two Data-driven Techniques

چکیده [English]

Accurate prediction of the rainfall plays a key role in effective water resources management, , especially in arid and semi-arid regions. Achieving reliable and accurate precipitation forecasts is one of today's challenging issues in water resources management and climate hazards. Even though the great deal of research has been conduted on application of computational intelligence models for climatic forecasting, but selecting the best combination of inputs to such models, modellers have faced with problems. The main objective of this study is to evaluate the effect of input variables preprocessing in choosing the best combination of variables affecting on precipitation process, for forecasting monthly rainfall by using two data-driven modeling techniques including Support Vector Regresion (SVR) and Gene Expression Programming (GEP). For this purpose, Gamma Test and correlation Test were used to preprocess the inputs of the models used in this research under a case study with monthly climate data related with Shiraz Synoptic station over 1982-2011.The performance of these models was evaluated by statistical criteria of R2,RMSE and NSE (Nash-Sutcliffe efficiency coefficient). The results showed that SVR model combined with Gamma Test forecasts monthly rainfall better than other models used ib this study.But GammaTest was not able to improve performance of Gene Expression Programme model the same as SVR model. Also, based on the obtained results, sun hours, relative humidity, rainfall in a previous month and temperature, respectively,are most significant variables in monthly rainfall forecasting.

کلیدواژه‌ها [English]

  • Rainfall- Gamma Test- Forecasting- Support Vector Regresion- Gene Expression Programming
  1. -ابارشی، ف.، مفتاح هلقی، م.، ثانی‌خانی،ه. و دهقانی، ا.، 1393. مقایسه عملکرد سه روش هوشمند به منظور پیش‌بینی نوسانات سطح ایستابی، مطالعه موردی: دشت زرین گل، نشریه پژوهش‌های حفاظت آب و خاک، جلد 21، شماره 1، ص 163-180.
  2. -احمدی، آ.، مریدی، ع.، کاکایی لفدانی، ا. و کیان پیشه، ق.، 1393. پیش‌بینی بلند مدت بارش بر پایه الگوهای پیوند دور اقلیمی، مطالعه موردی: حوضه اهرچای، فصلنامه علمی-پژوهشی آب و فاضلاب، جلد 25، شماره 5، ص 86-96.
  3. -خلیلی، ن.، خداشناس، س.ر. و داوری، ک.، 1387. پیش‌بینی بارش ماهانه با استفاده از شبکه-های عصبی مصنوعی (مطالعه موردی ایستگاه سینوپتیک مشهد)، مجله علوم و صنایع کشاورزی (ویژه آب و خاک)، جلد 22، شماره 1، ص 89-99.
  4. -دستورانی، م.ت.، عظیمی فشی، خ.، طالبی، ع. و اختصاصی، م.ر.، 1391. برآورد رسوبات معلق با استفاده از شبکه عصبی مصنوعی (مطالعه موردی: حوزه آبخیز جامیشان استان کرمانشاه)، پژوهشنامه مدیریت حوزه آبخیز دانشگاه علوم کشاورزی و منابع طبیعی ساری، سال سوم، پائیز و زمستان، شماره 6 ، ص 61-74.
  5. -سلطانی، ع.، قربانی، م. ع.، فاخری فرد، ا.، دربندی، ص. و فرسادی زاده، د.، 1389. برنامه ریزی ژنتیک و کاربرد آن در مدل‌سازی فرآیند بارش-رواناب، مجله دانش آب و خاک، جلد20، شماره 4، ص 61-71.
  6. -شریفی، ع.، دین‌پژوه، ی.، فاخری فرد، ا. و مقدم نیا، ع.، 1393. ترکیب بهینه متغیرها برای شبیه‌سازی رواناب در حوزه آبخیز امامه با استفاده از آزمون گاما، دانش آب و خاک، جلد23، شماره4، ص 59-72.‎
  7. -گلابی،م.، آخوندعلی، ع.م. و رادمنش، ف.، 1393. مقایسه دقت پیش‌بینی مدل‌های باکس-جنکینز در مدل‌سازی بارندگی فصلی (مطالعه موردی: ایستگاه‌های منتخب استان خوزستان)، فصلنامه تحقیقات جغرافیایی، جلد 29، شماره 114، ص 61-72.
  8. -Ahmadi, A., Han, D., Karamouz, M. and Remesan, R., 2009. Input data selection for solar radiation estimation, Hydrological processes, v. 23(19), p. 2754-2764, doi: 10.1002/hyp.7372.
  9. -Ahmadi, A., Moridi, A., Lafdani, E.K. and Kianpisheh, G., 2014. Assessment of climate change impacts on rainfall using large scale climate variables and downscaling models-A case study, Journal of earth system science, v. 123(7), 1603 p.
  10. -Ahmadi, A., Han, D., Lafdani, E. K. and Moridi, A., 2015. Input selection for long-lead precipitation prediction using large-scale climate variables: a case study, Journal of Hydroinformatics, v. 17(1), p. 114-129.
  11. -Chuan, C.S., 1997. weather prediction using artificial neural network, Journal of Hydrology, v. 230, p. 101-119.
  12. -Chang, F. J., Tsai, Y. H., Chen, P. A., Coynel, A. and Vachaud, G., 2015. Modeling water quality in an urban river using hydrological factors–Data driven approaches, Journal of environmental management, v. 151, p. 87-96.
  13. -Cristianini, N. and Shawe-Taylor, J., 2000. An introduction to support vector machines and other kernel-based learning methods, Cambridge university press, 189 p.
  14. -El-Shafie, A., Mukhlisin, M., Najah, A.A. and Taha, M.R., 2011. Performance of artificial neural network and regression techniques for rainfall-runoff prediction, International Journal of Physical Sciences, v. 6(8), p. 1997-2003.
  15. -Ferreira, C., 2006. Gene expression programming: mathematical modeling by an artificial intelligence, 2nd ed, Springer-Verlag, Germany, 478 p.
  16. -Ghabaei, S.M., Mosaedi, A., Hesam, M. and Hezarjaribi, A., 2010. Evaluation effect of input parameters preprocessing in artificial neural networks (Anns) by using stepwise regression and Gamma Test techniques for fast estimation of daily evapotranspiration, p 1-14.
  17. -Karamouz, M., Fallahi, M., Nazif, S. and Rahimi Farahani, M., 2009. Long lead rainfall prediction using statistical downscaling and artificial neural network modeling, Scintia Iranica, v. 16(1), p. 165-72.
  18. -Kisi, O. and Cimen, M., 2011. A wavelet-support vector machine conjunction model for monthly streamflow forecasting, Journal of Hydrology, v. 399(1), p. 132-140.
  19. -Lin, G.F., Jhong, B.C. and Chang, C.C., 2013. Development of an effective data-driven model for hourly typhoon rainfall forecasting, Journal of Hydrology, v. 495, p. 52-63.
  20. -Lopes, H.S. and Weinert, W.R., 2004. EGIPSYS: an enhanced gene expression programming approach for symbolic regression problems, International Journal of Applied Mathematics and Computer Science, v. 14(3), p. 375-384.
  21. -Moghaddamnia, A., Ghafari, M., Piri, J. and Han, D., 2009. Evaporation estimation using support vector machines technique, International Journal of Engineering and Applied Sciences, v. 5(7), p. 415-423.
  22. -Najafi, M.R., Moradkhani, H. and Wherry, S.A., 2010. Statistical downscaling of precipitation using machine learning with optimal predictor selection, Journal of Hydrologic Engineering, v. 16(8), p. 650-664.
  23. -Noori, R., Abdoli, M.A., Ghasrodashti, A.A. and Jalili Ghazizade, M., 2009. Prediction of municipal solid waste generation with combination of support vector machine and principal component analysis: a case study of Mashhad, Environmental Progress & Sustainable Energy, v. 28(2), p. 249-258.
  24. -Patil, C.Y. and Ghatol, A.A., 2010. Rainfall forecasting using local parameters over a meteorological station: an artificial neural network approach, International Journal of Engineering Research & Industrial Applications, v. 3, p. 341-356.
  25. -Rabunal, J.R., Puertas, J., Suarez, J. and Rivero, D., 2007. Determination of the unit hydrograph of a typical urban basin using genetic programming and artificial neural networks, Hydrological processes, v. 21(4), p. 476-485.
  26. -Vapnik, V., 2013. The nature of statistical learning theory, Springer Science & Business, 314 p.
  27. -Weerasinghe, H.D.P., Premaratne, H.L. and Sonnadara, D.U.J., 2010. Performance of neural networks in forecasting daily precipitation using multiple sources, Journal of the National Science Foundation of Sri Lanka, v. 38(3), p. 163-170.
  28. -Wu, C. L., Chau, K.W. and Fan, C., 2010. Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques, Journal of Hydrology, v. 389(1), p. 146-167.