تکوین ساختاری روند شمال‌باختری - جنوب‌خاوری در منطقه همت‌آباد - خاور ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زمین‎شناسی، دانشکده علوم، دانشگاه بیرجند، بیرجند، ایران

چکیده

مقدمه: روند ساختاری شمال غربی- جنوب شرقی، یکی از روندهای ساختاری غالب در شرق ایران است. راستگرد N-S گسلی نهبندان، بین زون ساختاری سیستان و لوت قرار دارد. مدل تکتونیکی و رشد روندهای شمال غربی - جنوب شرقی در شرق ایران با تحلیل تغییر شکل در منطقه همت آباد معرفی می­شود.
مواد و روش­ها: واحدهای سنگی زیرپهنه سیستان عبارتند از: واحدهای افیولیتی و دگرگونی کرتاسه و واحدهای فلیش- آوارآلاستی. منطقه همت آباد شامل: واحدهای افیولیتی امتداد یافته در جهت شمال غربی- جنوب شرقی، سنگ­های آتشفشانی و واحدهای ماسه سنگ، شیل، آهک با دگرگونی از تخته سنگ، فیلیت تا شیست است. چین‌های فرورفته شمال‌غربی در واحدهای شیل و ماسه‌سنگ ثالث دارای قسمت جلویی شیب‌دار در سمت جنوب غربی هستند که نشان‌دهنده همگرایی زمین ساختی جنوب غربی است. تحلیل هندسی و سینماتیکی پهنه­های گسلی مذکور نشان می­دهد که محور اصلی تراکم در منطقه دارای روند متوسط N25E است. مولفه برشی در پهنه­های گسلی شمال- جنوب و مولفه فشاری در پهنه­های شمال غربی- جنوب شرقی غالب است. با توجه به تحلیل هندسی گسل‌ها و مکانیسم‌های آن‌ها، چین‌خوردگی‌ها و برون‌آمدگی واحدهای سنگی، می‌توان فعالیت گسل‌های شمال شرقی را به‌عنوان گسل‌های قدیمی‌تر (پیش‌تر) در نظر گرفت.
نتایج و بحث: براساس شواهد ژئومورفولوژیکی از قبیل رودخانه­های جابجا شده، برآمدگی­های دریچه­ای و اسکارپ­های گسلی در منطقه همت آباد، پهنه­های گسلی به سمت جنوب غربی مهاجرت می­کنند. با ارزیابی گسل­ها و چین خوردگی ها، رخنمون واحدهای سنگی و ویژگی­های مورفوتکتونیکی، می­توان مدل ساختاری زیر را ارائه داد:
مرحله اول: با مولفه NE تنش فشاری، پهنه گسلی همت آباد برخوردی NW-SE که مولفه فشار در آن غالب است، واحدهای افیولیتی در معرض دید قرار گرفت.
مرحله دوم: گسل جدیدی مانند پهنه گسلی همت آباد (NW-SE) در قسمت جنوب غربی آن با مکانیزم راست- جانبی معکوس تشکیل شده است. با ادامه تغییر شکل مذکور، چین خوردگی سنگ­های رسوبی کرتاسه و پالئوسن- ائوسن و جابجایی در رودخانه­ها رخ داد.
مرحله سوم: برآمدگی­های شاتر با تشکیل گسل­های جدید ایجاد می­شوند. در این مدل رشد سازه­ها از شمال شرق به جنوب غرب انجام شده است. مولفه NE تنش فشاری، چین‌خوردگی‌هایی با ردپای محوری شمال غربی- جنوب شرقی در منطقه ایجاد کرده است. در گسل‌های ضربه‌گیر شمال به جنوب، مولفه امتداد لغز غالب است، اما در گسل‌های ضربه‌گیر شمال غربی به جنوب شرقی (مانند پهنه گسل همت‌آباد)، مولفه معکوس غالب است. شواهد مورفوتکتونیکی حاکی از آن است که برآمدگی اسکارپ­های گسلی از شمال شرقی به جنوب غربی و انحراف رودخانه­ها از جنوب شرقی به شمال غربی در حال کاهش است. بنابراین فعالیت زمین ساختی در قسمت جنوب شرقی بیشتر از قسمت شمال غربی در این منطقه است.
نتیجه ­گیری: رشد سازه‌ها در این ناحیه با ایجاد پهنه‌های گسلی ضربه‌گیر شمال باختری- جنوب شرقی از شمال شرق به جنوب غرب ادامه می‌یابد که نشان‌دهنده رشد ساختاری در روند شمال غربی- جنوب شرقی شرق ایران است. تکوین ساختاری روند شمال‌باختری - جنوب‌خاوری در منطقه همت‌آباد - خاور ایران.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Structural evolution of northwest-southeast trend in Hemmatabad area – East Iran

نویسندگان [English]

  • ebrahim gholami
  • mohammadmahdi khatib
  • Mohsen Karimidehkordi
Department of Geology, Faculty of Sciences, University of Birjand, Birjand, Iran
چکیده [English]

Introduction: Northwest-southeast structural trend, is one of the dominant structural trends in the east of Iran. Dextral N-S striking Nehbandan fault system, is located between Sistan and Lut structural zones. The tectonic model and growth of northwest-southeast trends in the east of Iran will be introduced by deformation analysis in Hematabad region.
Materials and methods: The rock units of the Sistan subzone include: Cretaceous ophiolitic and metamorphic units and flysch-pyroclastic units. Hematabad region includes: ophiolitic units extending in the northwest-southeast direction, volcanic rocks, and sandstone, shale, limestone units with metamorphism ranging from slate, phyllite to schist.
The northwest plunging folds in the tertiary’s shale and sandstone units have steep forelimb on the southwest side, which indicates the southwest tectonic vergence. Geometric and kinematic analysis of mentioned fault zones, indicates the main axis of compression in the region has an average trend of N25E. The shear component is dominant in the north-south fault zones and the compressive component is dominant in the northwest-southeast ones. According to the geometrical analysis of the faults and their mechanisms, folds and the rock units outcrop, the activity of the faults in the northeastern part can be considered as older (earlier) faults.
Results and Discussion: Based on geomorphological evidences such as displaced rivers, shutter ridges and fault scarps in Hematabad region, fault zones migrate to the southwest. By asessement of the fault and folds, outcrop of the rock units and the morphotectonic features, the following structural model can be presented:
The first stage: by NE component of compressive stress, the NW-SE striking Hematabad fault zone in which the pressure component is dominant, ophiolitic units was exposed.
The second stage: a new fault the same as Hemmatabad fault zone (NW-SE) has been formed in its southwestern part with a reverse right-lateral mechanism. With the continuation of mentioned deformation, folding of Cretaceous and Paleocene-Eocene sedimentary rocks and displacement in rivers occurred.
Third stage: Shutter ridges develop with the formation of new faults. In this model, the growth of the structures has been done from the northeast to the southwest.
NE component of compressive stress, has caused folds with a northwest-southeast axial trace in the region. In north-south striking faults, the strike-slip component is dominant, but in northwest-southeast striking faults (such as Hematabad fault zone), the reverse component is dominant.
The morphotectonic evidences indicate that the uplift of fault scarps is decreasing from the northeast to the southwest, and the deflection of rivers is decreasing from the southeast to the northwest. Therefore, the tectonic activity in the southeastern part is more than the northwestern part in this region.
Conclusion: The growth of structures in this area continues with the creation of NW-SE striking fault zones from the northeast to the southwest, which indicates the structural growth in the northwest-southeast trends in the east of Iran.

کلیدواژه‌ها [English]

  • Nehbandan fault zone
  • Hemmat abad fault zone
  • East Iran
  • Structural growth
  • Right-lateral fault
منابع (References)
 
-Abbasi S., Heyhat, M.R., Gholami, E. and Zarrinkoub, M.H., 2017. Deformation condition determination and strain analysis: Application of microstructural and microthermometry study of the Zamanabad Shear Zone (East of Iran). Geotectonics, v. 51(3), p. 319-330.
-Ahmadi Comijany, N., Khatib, M.M., Gholami, E., Mirab Shabestari, G. and Zarrinkoub, M.H., 2019. Estimation of shortening and vergence in northern part of Sistan Suture Zone for determination of kinematic convergent vectors. Journal of Advanced Applied Geology, v. 9(3), p. 232-255.
-Ahmadi Comijany, N., Khatib, M.M., Gholami, E., Mirab Shabestari, G. and Zarrinkoub, M.H., 2020. Investigation on Structural Evolution in Transperssional Zones based on Quantitative data from Measurements of Strain Parameters Case Study: Northern part of Sistan Suture zone, Tutak and Mahirud Regions, Kharazmi journal of earth sciences, v. 6(1), p. 21-40.
-Alimi, M.A., 2015. Seismological evaluation of active hidden fault zones (Eastern Iran - South Khorasan). PhD thesis, University of birjand (in Persian).
-Baghbani, M., Gholami, E. and Rostami Barani, H.R., 2017. Seismic Hazard Analysis of Siyaho Dam in South Khorasan province (Eastern Iran), Journal of Tethys, v. 4(3), p. 180-199.
-Berberian, M., Jakson, J.A., Qorashi, M., Talebian, M., Khatib, M.M. and Priestley, K., 2000. The 1994 Sefidabeh earthquakes in eastern Iran: blind thrusting and bedding-plane slip on a growing anticline, and active tectonic of the Sistan suture zone, Geophys. j. Int, v. 142, p. 283-299.
-Berberian, M. and Yeats, R.S., 2001. Contribution of archaeological data to studies of earthguake history in the Iranian plateau, Journal of structural geology, v. 23, p. 563-584.
-Berberian, M., 1988. Geotectonic evolution of the mountains of Iran, the 7th conference of geosciences, geological survey of Iran, Tehran (in Persian).
-Bull, W.B. and MC Fadden, L.D., 1977. Tectonic geomorphology north and south of the Garlock fault, California. Proceeding of 8th Annual Geomorphology Symposium, Newyork.
-Burbank, D.W. and Anderson, R.S., 2001. Tectonic Geomorphology, Blackwell Sci.Publ. 274 p.
-Camp, V.E. and Griffis, R.J., 1982. Character genesis and tectonic setting of igneous rocks in the Sistan suture zone, eastern Iran, Lithos, v. 15, p. 221-239.
-Eftekharnejad, J., 1972. Some content about the formation of Flysch sedimentary basin in eastern Iran and its related to plate tectonic theory. Geological Survey and Mineral Exploration of Iran, v. 22, 154 p (in Persian).
-Ezati, M., Gholami, E. and Mousavi, M., 2020. Paleostress regime reconstruction based on brittle structure analysis in the Shekarab Mountain, Eastern Iran, Arabian Journal of Geosciences, v. 13(23), p. 1-18.
-Ezati, M., Gholami, E. and Mousavi, M., 2021. Tectonic activity level evaluation using geomorphic indices in the Shekarab Mountains, Eastern Iran, Arabian Journal of Geosciences, v. 14(385), p. 1-16.
-Firouz, Q., Khatib, M.M. and Gholami, E., 2011. Analysis and evaluation of earthquake risk - active faulting around the ​​Asadieh city (Eastern Iran), Ms thesis, University of birjand (in Persian).
-Fossen, H., 2010. Structural geology, Cambridge university press.
-Freund, R., 1970. Rotation of strike slip faults in sistan, southeast Iran: Journal of structural geology, v. 78, p. 188-200.
-Ghasemi-Rozveh, T., Khatib, M.M, Yassaghi, A. and Gholami, E., 2016. Geodynamics and underlying bedrock of the magnetically active crust layer of the Lut block, Eastern Iran. Geotectonics, v. 50(3), p. 327-335.
-Ghasemi-Rozveh, T., Khatib, M.M., Yassaghi, A. and Gholami, E., 2017. Using airborne geophysical data in identifying tectonic lineaments in east of Iran, Geotectonics, v. 51(3), p. 331-339.
-Gholami, E., Nogolesadat, M.A.A., Khatib, M.M. and Yassaghi, A., 2009. Structural evidences of N-S striking faults effect on deformation development in SE Birjand, Sistan zone, Geosciences Scientific Quarterly Journal, v. 18(71), p. 13-18.
-Gholami, A., 2009. Deformation analysis along the main trends in the NNE of Lut Plain, PhD thesis, Tarbiat Modares University (in Persian).
-Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Carlson, S.D., Odhiambo, B. and Tate, A., 2001. Stream response to repeated coseismic folding, Tiptonville dome, New Madrid seismic zone, Geomorphology, v. 43, p. 313-349.
-Han, Z., Wu, L., Ran, Y. and Ye, Y., 2003. The concealed active tectonic and their characteristics as revealed by drainage density in the North China plain(NCP), Jurnal of Asian Earth Sciences, v. 21, p. 989-998.
-Heidari-Aghagol, M., Khatib, M.M., Gholami, E. and Shahsavani, N., 2015. Assessment of relative changes in tectonic activity in the northern part of the fault Ardekul (Eastern Iran), Journal of Tethys, v. 3(4), p. 297-310.
-Jalili, Y.,   Khatib, M.M.,  Gholami, E. and  Ghassemi, M.R., 2015. Geometric-Kinematic Analysis of Folding in Chelounakarea (NW Birjand). Geosciences, v. 24(94), v. 163-174.
-Karimi, M., Gholami, E. and Khatib, M.M., 2012. Deformation analysis along the Sarbisheh fault zone in eastern Iran, Ms thesis, University of birjand (in Persian).
-Khatib, M.M. and Shahriari, S., 1997. Fractal analysis of the Nahbandan fault system, Scientific Quarterly Journal, Geosciences, v. 24, p. 1-14 (in Persian).
-Keller, E.A. and pinter, N., 1996. Active tectonics, Earthquake Uplift and Landscape, Printice Hall In.
-Lecce, S.A., 1990. The alluvial fan problem, In: A.H. Rachocki and M.Church(eds.). Alluvial fans: A field approach
-Mayer, 1986. Tectonic geomorphology of escapments and mountain fronts, In active tectonic (compiled by Wallace, R. E.) Nat. Academic press, Washington, p. 125-135.
-McCall, G.J.H., 1985. Area Report, East Iran Project. Area No. 1. Report No. 57.Geol. Surv. Iran, 634 p.
-McClay, K.R., 1992. Thrust tectonics, Chapman and hall.
-Mohammadi Gharetape, A., Gholami, E., Khatib, M.M. and Golchin, M., 2014. Development of structures in a shear stress regime in East Dasht-e Bayaz Fault Zone (East of Iran), Journal of Tethys, v. 2(2), p. 101-111.
-Nazari, H.,1998. Structural Geology of Qaleh Sorkh -Nozad fault zone, Esat of Birjand (Hematabad), Earth Sciences, v. 7, p. 74-85 (in Persian).
-Nazari, H., 1999. Geological map of Sarbisheh scale of 1:100000, Geological survey and Mineral Explorations of Iran (in Persian).
 
-Porghiasian, F., Gholami, E. and Khatib, M.M., 2015. Assessment of Shear Strain Variation Along Koch Fault Zone Based on Study of Foliation, Geosciences, v. 24(94), p. 63-68.
-Samimi, S. and Gholami, E., 2017. Geometric and kinematic analysis of structural elements along north front of Bagharan Kuh Mountain, NE Iran. Geotectonics, v. 51(2), p. 192-208.
-Samimi, S., Gholami, E., Khatib, M.M., Madanipour, S. and Lisker, F., 2020, Role of transpressive tectonic regime in configuration of Bibi-Maryam area in the north part of Sistan Suture Zone, eastern Iran, Tectonics journal, v. 2(8), p. 29-42.
-Samimi, S., Gholami, E., Khatib, M.M., Madanipour, S. and Lisker, F., 2020. Transpression and Exhumation of Granitoid Plutons along the Northern Part of the Nehbandan Fault System in the Sistan Suture Zone, Eastern Iran, Geotectonics, v. 54(1), p. 130-144.
-Stocklin, J., 1968. Structural history and tectonics of Iran; A reviesw. Am. Assoc. Pet Geoll. Bull, v. 52, p. 1129-1258.
-Stevens, G.R., 1974. Rugged landscape, the geology of Central New Zealand. A.h. and A.W. Reed, Wellington, 286 p.
-Schoorl, J.M. and Veldkamp, A., 2003. Late Cenozoic landscape development and its tectonic implications for the Guadalhorce valley near Alora (Southern Spain): Geomorphology, v. 50, p. 43-57.
-Tirrul, R., Bell, I.R., Griffis, R.J. and Camp, V.E., 1983. The sistan suture zone of eastern Iran. Geological Society of America Bulletin, v. 94, p. 134-150.
-Snyder, N.P., Whipple, K.X., Tucker, G.E. and Merrits, D.J., 2003. Channel response to tectonic forcing: field analysis of stream morphology and hydrology in the Mendecino triple junction region, northern California: Geomorphology, v. 53, p. 97-127.
-Viseras, C., Calvache, M.L., Soria, J.M. and Fernandez, J., 2003. Differential features of alluvial fans controlled bytectonic or eustatic accommodation space, Examples from the Betic Cordillera, Spain: Geomorphology, v. 50, p. 181-202.
-Walker, R.T. and Jackson, J., 2004. Active tectonic and late Cenozoic strain distribution in central and eastern Iran. Tectonics, v. 23, p. 1- 17, doi.org/10.1029/2003TC001529.
-Walker, R.T. and Khatib, M.M., 2006. Active faulting in the Birjand region of eastern Iran: Tectonics, v. 25, p. 1-17.
-Walker, R.T., Jackson, J. and Baker, C., 2004. Active faulting and seismicity of the Dasht-e-Bayaz region, eastern Iran: Geophysical Journal International, v. 157, p. 265-282.
-Yazdanpanah, H., Khatib, M.M.,  Nazari, H. and Gholami, E., 2015. Analysis of preliminary paleosesmic results and seismotectonic data in Qaleh-Sorkh fault; East of Iran, Tectonics journal.