ارزیابی نحوه‌ پراکنش آلودگی هوای خروجی از دودکش‌های پالایشگاه نفت تبریز با استفاده از مدل AERMOD

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه جغرافیای طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 پژوهشکده علوم دریایی، پردیس بین‌المللی کیش، دانشگاه تهران، تهران، ایران

چکیده

کنترل منابع آلودگی ناشی از صنایع در راستای حفاظت از محیط­زیست، یکی از راهبردهای مدیریتی در مسیر دستیابی به توسعه پایدار است که نیازمند پیش­بینی غلظت آلاینده­ها در شعاع مشخصی از دودکش­ها بوده و مدل­های ریاضی قادر به شبیه­سازی آن هستند. در پژوهش حاضر به­منظور دستیابی به این رهیافت در دشت میان­کوهی تبریز، غلظت آلاینده­های خروجی از 20 دودکش پالایشگاه نفت تبریز با مدل AERMOD برای شعاع 10 کیلومتری پیش­بینی گردید. گلباد سالانه نشان داد که باد غالب مسیر شرقی و باد درجه­ یک مسیر غربی دارد. نتایج پیش­بینی مدل نشان داد که غلظت هشت­ساعته­ی مونوکسیدکربن 5/0 تا 20 میکروگرم بر مترمکعب؛ غلظت یک­ساعته دی‌اکسید گوگرد و دی‌اکسید نیتروژن بین 5 تا 100 میکروگرم بر مترمکعب و غلظت 24 ساعته­ ذرات معلق کوچک­تر از 5/2 میکرون نیز بین 5/0 تا 10 میکروگرم بر مترمکعب بود که غلظت آن‌ها کمتر از حد مجاز انتشار می­باشد. مسیر بادهای شرقی موجب انتقال آلاینده­ها به­ سمت کوهپایه­های شمالی سهند در جنوب­غربی پالایشگاه نفت شده و در ارتفاع کمتر از 1500 متر تجمع می­یابند. بیشترین تجمع آلاینده­های جوی در شهر خلجان در جنوب­غربی پالایشگاه نفت تبریز بوده و از طرف دیگر بادهای غالب باعث شده تا آلاینده­ها از دشت تبریز فاصله گرفته و تأثیر زیادی بر اکوسیستم محیطی دشت تبریز نداشته باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the distribution of exhaust air pollution from the chimneys of Tabriz Oil Refinery using AERMOD model

نویسندگان [English]

  • Bromand Salahi 1
  • mahmoud behrouzi 2
1 Department of Physical Geography, University of Mohaghegh Ardabili, Ardabil, Iran
2 Environmental Hazards, Marine Science Institute, Kish International Campus, University of Tehran, Tehran, Iran
چکیده [English]

Introduction
Controlling industrial pollution sources in order to protect the environment is one of the management strategies in the path of achieving sustainable development, which requires predicting the concentration of pollutants in a specific radius of the chimney and mathematical models can be similar. Air pollution is one of the most important environmental problems in industrial areas and its release from the chimney and its distribution in the atmosphere of any area causes serious damage to the ecosystem of adjacent lands. In point pollution sources such as chimneys of industries and refineries, the spread of pollutants depends on factors such as physicochemical properties of the emitted material, chimney characteristics, meteorological conditions and surface topology.
Materials and methods
In the present study, in order to achieve this approach in the middle mountain plain of Tabriz, the concentration of pollutants emitted from 20 chimneys of Tabriz oil refinery with AERMOD model for a radius of 10 km was predicted. In this study, using meteorological data, land use layer, digital elevation model and chimney characteristics, distribution and concentration of pollutants from the chimneys of Tabriz oil refinery including SO2, NO2, CO and PM2.5 was predicted using the AERMOD model. The AERMOD model is a permanent state distribution model that can be used to determine the concentration of various pollutants in urban and suburban areas. The AERMOD model has two modules including AERMET and AERMAP. The AERMET module is related to the preparation of meteorological and land use data files and the AERMAP module is related to the characteristics of the chimney, pollutants and the digital elevation model. AERMET module data include wind direction and speed, cloud cover, relative humidity and surface air temperature (2 meters above the ground) in a period of one hour, which is in the range of meteorological data of Tabriz Synoptic Station in the interval Estimated time from 2010 to 2020. Using the information provided in the two modules, the distribution of pollutants from the chimneys were calculated using the AERMOD model.
Results and discussion
Annual wind rose plot showed that the dominant wind is from the east and the first-degree wind is from the west. The results of the model prediction showed that the concentration of CO 8h was 0.5 to 20 ug/m3; The concentrations of SO2 and NO2 1h were between 5 and 100 ug/m3, and the concentration of PM2.5 24h was between 0.5 and 10 ug/m3, which were less than standard emit. East winds transfer pollutants to the northern of the Sahand, southwest of the oil refinery, and accumulate at altitudes of less than 1500 meters. The highest concentration of atmospheric pollutants is in Kheljan city in the southwest of Tabriz oil refinery and prevailing winds have caused the pollutants to move away from Tabriz plain and not have much impact on the environmental ecosystem of Tabriz plain. Pollutants under the influence of prevailing winds, have accumulated in the northern foothills of Sahand and in the southwestern part of Tabriz oil refinery and their maximum limit is in the range of 1450 to 1500 meters, but from this level (1500 m altitude) onwards, as the altitude of the place increases, the concentration of air pollutants decreases. Due to the establishment of the boundary layer, the maximum concentration of air pollutants is at an altitude of 1450 to 1500 meters in the southern foothills, from which the concentration of gases and suspended particles from the chimney is reduced.
Conclusion
In the mid-mountain plain of Tabriz, the concentration of pollutants leaving the chimneys of the oil refinery is less than the standard limit and does not have much effect on various ecologies and ecosystems. Due to the presence of prevailing east winds, the maximum concentration of gaseous pollutants and particulate matter in the northern foothills of Sahand and in the ambient air of Khaljan urban settlement and the wind has caused pollutants from the city of Tabriz, which is located east of the oil refinery. It is moving away and flowing to the southern mountains, and in the metropolis of Tabriz, these pollutants are very low.

کلیدواژه‌ها [English]

  • Oil Refinery
  • SO2
  • Particles Matter
  • Tabriz City
  • AERMOD Model
-جهانبخش اصل، س. و روشنی، ر.، 1392. بررسی وضعیت و شدت وارونگی­های سطح پایین شهر تبریز طی دوره 2004 تا 2008، فصلنامه تحقیقات جغرافیایی، شماره 28(4)، ص 45-54.
-زینالی، ب. و عظیمی، ع.، 1395. امکان­سنجی پتانسیل انرژی بادی در شمال غرب ایران با استفاده از الگوریتم فازی، فصلنامه برنامه­ریزی منطقه­ای، دوره 6،  شماره 24، ص 73-88.
-سازمان حفاظت محیط ‌زیست، 1395، ماده (15) قانون نحوه جلوگیری از آلودگی هوا- مصوب 1374، تصویب­نامه هیئت وزیران.
-شمسی­پور، ع.­ا.، اشرفی، ا.، علی­خواه اصل، م. و اشرفی، خ.، 1394. مدل‌سازی الگوی پراکنش ذرات معلق در منطقه جنوب تهران (مطالعه موردی: کارخانه سیمان تهران) با مدل AERMOD، نشریه محیط­شناسی،  شماره 41(4)، ص 799-814.
-ظروفچی بنیس، خ.، فاتحی­فر، ا.، احمدی، ج. و محمدی، م.، 1393. مدل‌سازی پخش آلودگی هوا با استفاده از نرم­افزار ISCST در اطراف شرکت پالایش نفت تبریز، نشریه مهندسی عمران و محیط­زیست، شماره 44(4)، ص 106-100.
-عتابی، ف.، جعفری گل، ف.، مؤمنی، م.ر.، سلیمیان، م. و بهمن­نیا، غ.، 1393. مدل‌سازی نحوه پراکنش آلاینده CO با استفاده از نرم­افزار AERMOD در پالایشگاه 4 گازی پارس جنوبی، مجله مهندسی بهداشت محیط، جلد 1، شماره 4، ص 281-292.
-مؤمنی، ا.، دانه­کار، ا.، کریمی، ص. و خراسانی، ن.، 1390. مدل‌سازی پخش SO2 ناشی از نیروگاه اهواز با استفاده از مدل AERMOD، نشریه انسان و محیط­زیست، دوره  9، شماره 29، ص 3-8.
-نورپور، ع.­ر. و کاظمی شهابی، ن.، 1393. مدل‌سازی پراکنش آلاینده­های هوا خروجی از دودکش کارخانه سیمان ایلام، نشریه مهندسی عمران و محیط­زیست،  شماره 44(74)، ص 107-116.
 
 
 
-Afzali, A., Rashid, M., Afzali, M. and Younesi, V., 2017. Prediction of air pollutants concentrations from multiple sources using AERMOD coupled with WRF prognostic model, Journal of Cleaner Production, v. 166, p. 1216-1225.‏
-Amoatey, P., Omidvarborna, H., Affum, H.A. and Baawain, M., 2019. Performance of AERMOD and CALPUFF models on SO2 and NO2 emissions for future health risk assessment in Tema Metropolis, Human and Ecological Risk Assessment: An International Journal, v. 25(3), p. 772-786.‏
-Arani, M.H., Jaafarzadeh, N., Moslemzadeh, M., Ghalhari, M.R., Arani, S.B. and Mohammadzadeh, M., 2021. Dispersion of NO2 and SO2 pollutants in the rolling industry with AERMOD model: a case study to assess human health risk, Journal of Environmental Health Science and Engineering, p. 1-12.‏
-Cimorelli, A.J., Perry, S.G., Venkatram, A., Weil, J.C., Paine, R.J., Wilson, R.B. and Brode, R.W., 2005. AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization, Journal of applied meteorology, v. 44(5), p. 682-693.‏
-Contardo, T., Vannini, A., Sharma, K., Giordani, P. and Loppi, S., 2020. Disentangling sources of trace element air pollution in complex urban areas by lichen biomonitoring, A case study in Milan (Italy), Chemosphere, v. 256, p. 127-155.‏
-Kesarkar, A.P., Dalvi, M., Kaginalkar, A. and Ojha, A., 2007. Coupling of the Weather Research and Forecasting Model with AERMOD for pollutant dispersion modeling, A case study for PM10 dispersion over Pune, India, Atmospheric Environment, v. 41(9), p. 1976-1988.‏
-Křeček, J., Palán, L., Pažourková, E. and Stuchlík, E., 2019. Water-quality genesis in a mountain catchment affected by acidification and forestry practices, Freshwater Science, v. 38(2), p. 257-269.‏
-Kumar, A., Patil, R.S., Dikshit, A.K. and Kumar, R., 2017. Application of WRF model for air quality modelling and AERMOD-a survey. Aerosol and Air Quality Research, v. 17(7), p. 1925-1937.‏
-Macêdo, M.F.M. and Ramos, A.L.D., 2020. Vehicle atmospheric pollution evaluation using AERMOD model at avenue in a Brazilian capital city, Air Quality, Atmosphere & Health, v. 13(3), p. 309-320.‏
-Meo, S.A., Abukhalaf, A.A., Sami, W. and Hoang, T.D., 2021. Effect of environmental pollution PM2. 5, carbon monoxide, and ozone on the incidence and mortality due to SARS-CoV-2 infection in London, United Kingdom, Journal of King Saud University-Science, v. 33(3), p. 101-137.‏
-Mokhtar, M.M., Hassim, M.H. and Taib, R.M., 2014. Health risk assessment of emissions from a coal-fired power plant using AERMOD modelling, Process Safety and Environmental Protection, v. 92(5), p. 476-485.‏
-Momeni, I., Daneh Kar, A., Karimi, S. and Khorasani, N., 2011. Modeling SO2 emission from Ahvaz Ramin power plant using AERMOD model. Man and the Environment, v. 9 (3(18-29)), p. 3-8.
-Moreno-Silva, C., Calvo, D.C., Torres, N., Ayala, L., Gaitán, M., González, L. and Susa, M.R., 2020. Hydrogen sulphide emissions and dispersion modelling from a wastewater reservoir using flux chamber measurements and AERMOD® simulations, Atmospheric Environment, v. 224, p. 117-136.‏
-Mousavi, S.S., Goudarzi, G., Sabzalipour, S., Rouzbahani, M.M. and Hassan, E.M., 2021. An evaluation of CO, CO2, and SO2 emissions during continuous and non-continuous operation in a gas refinery using the AERMOD, Environmental Science and Pollution Research, p. 1-13.‏
-Pandey, G. and Sharan, M., 2019. Accountability of wind variability in AERMOD for computing concentrations in low wind conditions, Atmospheric Environment, v. 202, p. 105-116.‏
-Perry, S.G., Cimorelli, A.J., Paine, R.J., Brode, R.W., Weil, J.C., Venkatram, A. and Peters, W.D., 2005. AERMOD: A dispersion model for industrial source applications. Part II: Model performance against 17 field study databases, Journal of applied meteorology, v. 44(5), p. 694-708.
-Rzeszutek, M. and Szulecka, A., 2021. Assessment of the AERMOD dispersion model in complex terrain with different types of digital elevation data, In IOP Conference Series: Earth and Environmental Science, v. 642(1), p. 120-134. IOP Publishing.‏
-Santos, F.S., Miranda, G.A., Carvalho, A.N., Carvalho, V.S. and Albuquerque, T.T.D.A., 2019. Regulated air pollutant emissions from higher emitters’ stationary sources in Belo Horizonte, Minas Gerais, Brazil, Brazilian Journal of Chemical Engineering, v. 36, p. 775-784.‏
-Seangkiatiyuth, K., Surapipith, V., Tantrakarnapa, K. and Lothongkum, A.W., 2011. Application of the AERMOD modeling system for environmental impact assessment of NO2 emissions from a cement complex, Journal of Environmental Sciences, v. 23(6), p. 931-940.‏
-Steinberga, I., Sustere, L., Bikse, J., Bikse, J. and Kleperis, J., 2019. Traffic induced air pollution modeling: Scenario analysis for air quality management in street canyon, Procedia Computer Science, v. 149, p. 384-389.‏
-Su, T., Li, Z. and Kahn, R., 2018. Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: regional pattern and influencing factors, Atmospheric Chemistry and Physics, v. 18(21), p. 15921-15935.