سنگ‌شناسی و زمین‌شیمی سنگ‌های مافیک مجموعه افیولیتی بی‌بی مریم، پهنه گسلی نهبندان، در شرق ایران

نوع مقاله : علمی -پژوهشی

نویسندگان

دانشگاه سیستان و بلوچستان

چکیده

افیولیت بی­بی ­مریم بخشی از مجموعه افیولیتی نهبندان، به سن کرتاسه، در بخش شمالی پهنه گسلی نهبندان، شرق ایران، است. سنگ‌های مافیک این مجموعه شامل بازالت، دیاباز و گابرو هستند. نبود سنگ­های دگرگونی رخساره شیست­سبز، شیست­آبی و آمفیبولیت، فقدان سنگ­های کومه­ای پریدوتیتی با وجود فراوانی پریدوتیت­های گوشته­ای، عدم مشاهده گابروی کومه­ای علیرغم فراوانی گابروی ایزوتروپ، نبود دسته دایک­های دیابازی به صورت یک واحد مستقل، گسترش اندک آهک پلاژیک و چرت­های رادیولاریتی و غنی­شدگی سنگ‌های مافیک از عناصر ناسازگار و کمیاب خاکی­ سبک در مقایسه با مورب ­عادی، دلایل نوزاد بودن حوضه اقیانوسی و افیولیت­های منطقه محسوب می­گردد. ماگمای مادر به وجود آورنده سنگ­های مافیک این مجموعه، از نوع تولئیتی آبیسال بوده است. مقادیر متوسط TiO2 و K2O به ترتیب برابر با 47/0 و 19/0 درصد وزنی در سنگ­های منطقه حاکی از ارتباط آن­ها با یک ماگمای مورب عادی است. در عین‌حال مقادیر و نسبت­های عناصر کمیاب و کمیاب خاکی حاکی از غنی بودن ماگما از عناصر ناسازگار در مقایسه با ترکیب مورب عادی است. مجموعه شواهد زمین­شناختی و زمین­شیمیایی بیانگر این است که پهنه گسلی نهبندان اساساً یک کافت میان­اقیانوسی غیر­عادی بوده است. AbstractThe Bibi Maryam Ophiolite suite in the north of Nehbandan fault zone, East of Iran, is a part of Nehbandan Ophiolitic Complex with Cretaceous age. Mafic rocks of this suite are basalt, diabase and gabbro. Lack of metamorphic rocks of greenschist, blueschist and amphibolite facies, absence of cumulate peridotite and gabbro in spite of occurrence of mantle peridotite and isotropic gabbro, absence of discrete diabase sheeted dikes, scarcity of pelagic limestone and radiolarian chert, and enrichment of mafic rocks in incompatible elements and LREEs in comparison to normal MORB are indicative of the immature nature of the Bibi Maryam ophiolite suite. The primary magma of the mafic rocks has been abyssal tholeiite. The average amounts of TiO2 and K2O are 0.47 and 0.19, respectively, indicating the magma has been of NMORB type. However, regarding the trace element and REE contents of the mafic rocks, the magma should have been enriched in incompatible elements compared to NMORB. Based on these geological and geochemical evidence, the Nehbandan fault zone is thought to be an aborted mid-ocean rift. Keywords: Bibi Maryam ophiolite, Nehbandan fault zone, Immature ocean basin, Immature ophiolite, East of Iran. 

کلیدواژه‌ها


عنوان مقاله [English]

Petrology and geochemistry of mafic rocks from Bibi Maryam ophiolite suite, Neh fault zone, east Iran

چکیده [English]

The Bibi Maryam ophiolite suite, north of Neh fault zone, east Iran, is a part of Neh ophiolitic complex of Cretaceous age. Mafic rocks of this suite are basalt, diabase and gabbro. Lack of metamorphic rocks of greenschist, blueschist and amphibolite facies, absence of cumulate peridotite and gabbro in spite of occurrence of mantle peridotite and isotropic gabbro, absence of discrete diabase sheeted dikes, scarcity of pelagic limestone and radiolarian chert, and enrichment of mafic rocks in incompatible elements and LREEs in comparison to normal MORB are indicative of the immature nature of the Bibi Maryam ophiolite suite. The primary magma of the mafic rocks has been abyssal tholeiitic. The average amounts of TiO2 and K2O are 0.47 and 0.19, respectively, indicating the magma has been of NMORB type. However, regarding the trace element and REE contents of the mafic rocks, the magma should have been enriched in incompatible elements compared to NMORB. Based on these geological and geochemical evidence, the Neh fault zone is thought to be an aborted mid-ocean rift.

کلیدواژه‌ها [English]

  • Bibi Maryam ophiolite- immature ophiolite- Neh fault zone- NMORM
  1. -ترابی، ق.، 1386. تعیین شرایط فشار و دمای تشکیل آمفیبولیت‌های افیولیت جندق (شمال شرق استان اصفهان) با استفاده از دماسنجی و فشارسنجی کانی‌های آمفیبول و پلاژیوکلاز. مجله بلورشناسی و کانی‌شناسی ایران، شماره 1، ص 117-134.
  2. -دلاوری، م.، امینی، ص. و ساکانی، ا.، 1389. روابط صحرایی، ژئوشیمی و خاستگاه ژئودینامیکی نهشته‌های کرومیتیت معدن بندان (شرق ایران). مجله بلورشناسی و کانی‌شناسی، شماره 2، ص241-250.
  3. -دلاوری، م. و امینی، ص.، 1389. مدل‌سازی مکانیسم ذوب بخشی در گوشته بر اساس مطالعه پریدوتیت‌های افیولیتی نهبندان، شرق ایران، پانزدهمین همایش انجمن زمین‌شناسی ایران.
  4. -دلاوری، م.، 1392. جایگاه متفاوت ژئودینامیکی واحدهای افیولیتی زمین‌درز سیستان: بررسی روابط بافتی و شیمی کانی‌های توالی اولترامافیک- مافیک پوسته‌ای، مجله پترولوژی، شماره 16، ص 39-58.
  5. -ژوتو، ت. و موری، ر.، 1381. زمین‌شناسی پوسته اقیانوسی (پترولوژی و دینامیک درونی)، ترجمه: درویش زاده ع، انتشارات دانشگاه تهران، 569 ص.
  6. -علوی نائینی، م. و لطفی، م.، 1368. نقشه زمین-شناسی 1:100000 نهبندان، سازمان زمین‌شناسی و اکتشافات معدنی کشور (برگ شماره 8053).
  7. -فرید آزاد، م.، موید، م.، مجتهدی، م. و مؤذن، م.، 1389. سنگ‌شناسی و سنگ‌زائی آمفیبولیت‌های موجود در مجموعه افیولیتی خوی- شمال غربی ایران، مجله بلورشناسی و کانی‌شناسی ایران، شماره 2، ص 233-246.
  8. -مختاری، ز. و ترابی، ق.، 1392. بررسی شرایط دما و فشار تشکیل آمفیبولیت‌های مجموعه افیولیتی پشت بادام (شمال شرقی یزد)، مجله بلورشناسی و کانی‌شناسی ایران، شماره 3، ص 561- 572.
  9. -Anant, S., Rajish, K.S., Chandra, R. and George, A.J., 2001. Fe-Ti-enriched mafic rocks from south Andaman ophiolite suite, Implication of late stage liquid immiscibility, v. 80, p. 453-454.
  10. -Babazadeh, S.A. and De Wever, P., 2004. Early Cretaceous radiolarian assemblages from radiolarites in the Sistan Suture (Eastern Iran): Geodiversitas, v. 26 (2), p.185-208.
  11. -Barth, M.G. and Gluhak, T.M., 2008. Geochemistry and tectonic setting of mafic rocks from the Othris Ophiolite, Greece: Mineral Petrol, 18 p.
  12. -Beccaluva, L. and Serri, G., 1988. Boninitic and low-Ti subduction-related lavas from intraoceanic arc-backarc systems and low-Ti ophiolites: a reappraisal of their petrogenesis and original tectonic setting, Tectonophysics, v. 146, p. 291-315.
  13. -Delaloye, M. and Desmons, J., 1980. Ophiolites and melange terranes in Iran, A geochronological study and its paleotectonic implication: Tectonophysics, v. 68, p. 83-111.
  14. -Delavari, M., Amini, S., Saccani, I.E. and Beccaluva, L., 2009. Geochemistry and Petrogenesis of Mantle Peridotites from the Nehbandan Ophiolitic Complex, Eastern Iran: Journal of Applied Sciences, v. 9 (15), p. 2671-2687.
  15. -Delavari, M., Amini, S., Schmitt, A.K., McKeegan, K.D. and Harrison, T.M., 2014. U-Pb geochronology and geochemistry of Bibi-Maryam pluton, eastern Iran: Implication for the late stage of the tectonic evolution of the Sistan Ocean: Lithos 200-201, p. 197-211.
  16. -Falloon, T.J., Malahoff, A., Zonenshain, L.P. and Bogdanov, Y., 1992. Petrology and geochemistry of back-arc basin basalts from Lau Basin spreading ridges: Mineral, Petrol, v. 47 (1), p. 1–35.
  17. -Footohi Rad, G.R., 2004. Petrology and geochemistry of metamorphosed ophiolites of east of Birjand: unpublished Ph.D Thesis, Tarbiat Moallem University of Tehran, Iran, 324 pp.
  18. -Ghazi, A.M., Hassanipak, A.A., Mahoney, J.J. and Duncan, R.A., 2004. Geochemical characteristics, 40Ar– 39Ar ages and original tectonic setting of the Band-e-Zeyarat/ Darnar ophiolite, Makran accretionary prism, S.E. Iran: Tectonophysics, v. 393, p.175–196.
  19. -Hawkins, J.W., 2003. Geology of supra-subduction zones, Implications for the origin of Ophiolites, In: Dilek, Y. and Robinson, P.T., (eds.), Ophiolites in Earth History: Geological Society of London Special Publication, v. 218, p. 227-268.
  20. -Ik Lee, J., Hie Choe, W., Lee, M.J., Do Hur, S. and Keun Jin, Y., 2007. Origin of E-MORB in a fossil spreading center: the Antarctic-Phoenix Ridge, Drake Passage, Antarctica: Geosciences Journal, v. 11, p. 185- 199.
  21. -Irvine, T.N. and Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks: Canadian Journal of Earth Science, v. 8, p. 523-548.
  22. -Kretz, R., 1983. Symbols for Rock Forming Minerals: Am. Mineral, v. 68, p. 277-279.
  23. -Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, J., Sabine, P.A., Sorenson, H., Streckeisen, A., Wolly, A.R. and Zanetin, B., 1989. A Classification of Igneous Rocks and Glossary of Term, Recommendations of the IUGS Subcommision on the Systematics of Igneous Rocks: Oxford, Blackwell Acad, Publ., 193 p.
  24. -Lentz, D.R., 1998. Petrogenetic evolution of felsic volcanic sequences associated with Phanerozoic volcanic hosted massive sulfide systems, The role of extensional geodynamics: Ore Geology Reviews, v. 12, p. 289–327.
  25. -Mc Birney, A.R., 2007. Igneous Pertrology (3rd eds.): Jones & Bartlett, 550 p.
  26. -Morgan, J.P., Blackman, D.K. and Sinton, J.M., 1992. Mantle Flow and Melt Generation at Mid-Ocean Ridges: Geophysical Monograph 71, American Geophysical Union.
  27. -Nicholas, A., 1989. Structure of Ophiolites and Dynamics of Oceanic Lithosphere: Kluwer, Boston, 367 p.
  28. -Oskarsson, N., Sigvaldson, G.E. and Steinthorsson, S., 1982. A dynamic model of rift zone petrogenesis and the regional petrology of Iceland: Journal of Petrology, v. 23, p. 28-74.
  29. -Pang, K.N., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S., Yang, H.M., Chu, C.H., Lee, H.Y. and Lo, C.H., 2012. Age, geochemical characteristics and petrogenesis of Late Cenozoic intraplate alkali basalts in the Lut–Sistan region, eastern Iran: Chemical Geology, v. 306-307, p. 40–53.
  30. -Pearce, J.A., 1983. Role of sub-continental lithosphere in magma genesis at active continental margins, In: Hawkesworth, C.J., Norry, M.J. (eds.), Continental basalts and mantle xenoliths, Shiva Geology Series, Nantwich, p. 230-272.
  31. -Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust, v. 100, p. 14-48.
  32. -Rajish, K., Srivastava Chandra, R. and Shastry, A., 2004. High-Ti type N-MORB parentage of basalts from the south Andaman ophiolite, India: Earth and Planetary, v. 113, p. 605-618.
  33. -Saccani, E., Delavari, M., Beccaluva, L. and Amini, S., 2010. Petrological and geochemical constraints on the origin of the Nehbandan ophiolitic complex (eastern Iran): Implication for the evolution of the Sistan Ocean: v. 117, p. 209-228.
  34. -Saunders, A.D. and Tarney, J., 1991. Back-arc basins, In: Floyd, PA., (eds.), Oceanic Basalts, Blackie, Glasgow, p. 219-263.
  35. -Şengör, A.M.C., Altlner, D., Cin, A., Ustaomer, T. and Hsu, K.J., 1988. Origin and assembly of the Tethyside Orogenic Collage at the expense of Gondwana Land, In: Audley-Charles, M.G., Hallam, A.E. (eds.), Gondwana and Tethys: Geological Society of London Special Publication, Blackwell, Oxford, p. 119–181.
  36. -Serri, G., 1981. The petrochemistry of ophiolite gabbroic complexes: a key for the classification of ophiolites into low-Ti and high-Ti types: Earth Planet, v. 52, p.203-212.
  37. -Shervais, J.W., 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas: Earth Planet, v. 57, p. 101-108.
  38. -Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implication for mantle composition processes. In: Saunders, A.D., Norry, M.J. (eds.), Magmatism in the Ocean Basins: Geological Society Special Publication, p. 313-345.
  39. -Sun, W., Bennett, V.C., Eggins, S.M., Arculus, R.J. and Perfit, M.R., 2003. Rhenium systematics in submarine MORB and back-arc basin glasses, laser ablation ICP-MS results: Chemical Geology, 23 p.
  40. -Tirrul, R., Bell, I.R., Griffis, R.J. and Camp, V.E., 1983. The Sistan Suture Zone of Eastern Iran: Geol Soc Am Bull, v. 94, p.134-150.
  41. -Wilkinson, J.F.G., 1982. The genesis of mid-ocean ridge basalt: Earth Science Review, v. 18, p. 1-57.
  42. -Winter, J., 2010. An Introduction to Igneous and Metamorphic Petrology: Pearson-Prentice Hall, 702p.
  43. -Yun Peng, D., GuoWei, Z., Zhao, Y., Xia, Z., HaiYong, M. and AnPing, Y., 2007. Geochemistry of the E-MORB type ophiolite and related volcanic rocks from the Wushan area, West Qinling: Earth Sciences (In China Press), 12 p.
  44. -ZhiCheng, Z., Chen, C., ZhaoJie, G., JianFeng, L., ZhiShuo, F. and WenHao, T., 2011. Geochronology, geochemistry and its geological significance of the Permian Mandula mafic rocks in Damaoqi, Inner Mongolia: Earth Sciences (China), 14 p.