دیاژنز و کانی شناسی اولیه سنگ‌های آهکی ژوراسیک فوقانی در بلوک طبس

نوع مقاله : علمی -پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

چکیده

سنگ­های سری­­های راور و سازند بیدو با سن آکسفوردین – کیمیریجین متعلق به ژوراسیک پسین در جنوب بلوک طبس گسترش دارند. در این بخش از بلوک طبس چهار برش زمین­شناسی مورد بررسی قرار گرفته است. سنگ­شناختی غالب این برش­ها، آهک و شیل بوده که قسمت فوقانی آنها با لایه­های تبخیری پوشیده شده است. مهم­ترین فرآیندهای دیاژنزی مشاهده شده در مقاطع نازک مورد مطالعه آهن­دار شدن، میکریتی شدن، دولومیتی شدن، سیمانی شدن، ندول­های تبخیری و تراکم می­باشند. تفسیر توالی پاراژنتیکی سنگ­های آهکی مورد مطالعه نشان دهنده تاثیر فرآیندهای مختلف دیاژنزی در مراحل دریایی، متائوریکی و تدفینی می­باشد. در این پژوهش، نمونه­های آهکی از برش­های حورجند، لکرکوه شمالی و جنوبی، و خورند مورد تجزیه ژئوشیمیایی قرار گرفتند. ژئوشیمی عناصر فرعی (Na, Sr, Mn) نظیر بالا بودن مقدار Sr/Na با میانگین بیش از 2 حاکی از ترکیب کانی­شناسی اولیه آراگونیتی است. بالا بودن مقادیر Mn حاکی از تاثیر دیاژنز متائوریکی روی این نمونه­ها می­باشد. پایین بودن نسبت Sr / Mn  و Sr/ Ca در مقابل Mn حاکی از دگرسانی بیشتر در این نمونه­ها است که یک سیستم دیاژنتیکی عمدتاً باز با نسبت تبادل آب به سنگ بالا را نشان می­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Diagenesis and primary mineralogy of the upper Jurassic carbonate rocks in the Tabas block

نویسندگان [English]

  • Seyedeh Narges Edalatimanesh 1
  • Sasan Bagheri 1
  • Mohammad Hossein Adabi 2
  • Mostafa Ghomashi 1
  • Mohammad Boomeri 1
1 Department of Geology, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran
2 Department of Geology, School of Earth Sciences, Shahid Beheshti University, Tehran, Iran
چکیده [English]

IntroductionThe Oxfordian – Kimmeridgian rocks of the Ravar series and the Bido Formation with the age of Upper Jurassic, are distributed in the south of Tabas Block. The most important diagenetic processes in the studied thin sections are namely hematitization, micritization, dolomitization, cementation, evaporite nodules and compaction. Interpretation of paragenetic sequences of studied samples show the effect of different processes in the marine, meteoric and burial diagenetic environments. Major and minor elements and comparison with previous studies, indicate that aragonite was an original carbonate mineralogy for the Upper Jurassic carbonate rocks in the Ravar area. Low Sr / Mn and Sr/ Ca versus Mn show higher alteration in the studied samples which mainly show an open diagenetic system with high water- rock interaction.Material and MethodsAfter field observations, 78 samples of carbonate rocks were selected from four geological sections of north of Lakar- Kuh -1, 2, Horjond, Baghamshah, and Khorand. After microscopic observations, 21 carbonate samples from studied intervals were selected for elemental investigations in the geochemistry lab of the Shahid Beheshti University. In order to determine original carbonate mineralogy, these data were compared with Mozduran Formation carbonates, Gordon warm water tropical limestones of Tasmania, the Ilam, Fahliyan Formations and Qaleh- Dokhtar carbonates with original aragonite mineralogy. Low Sr/Mn ratio show high water – rock interaction.Results and discussionActivity of microscopic organisms in these environments is associated with micritization in the lagoon environments. Bladed cement forms in the marine environments and equant, blocky and drusy calcite cements are formed in meteoric and mainly in burial environments. With increasing depth of burial, chemical compaction has formed dissolution seams and stylolite. Hemititization and dolomitization processes are formed in the late diagenetic stages.Geochemistry of major elements (Na, Sr, and Mn) such as high Sr/Na ratio with the average of > 2 show aragonite was an original carbonate mineralogy. High Mn values suggest the effect of meteoric diagenesis on the studied samples. Higher Sr values in some of the samples may indicate original aragonite mineralogy and low impact of diagenetic processes. The high Sr/Ca and Mn variations in the studied carbonates represent the effect of meteoric diagenesis in closed and open diagenetic systems.  ConclusionSr/Mn versus Mn variations in samples fall within and very close to aragonite field of the Mozduran Formation due to higher impact of meteorite diagenesis. This probably shows the effect of meteoric diagenesis with higher water - rock interaction (W/R) in an open diagenetic system. Relatively low Sr/Mn values show an open diagenetic system for studied carbonate samples. The Sr/Ca ratio in the studied carbonates show a relatively open diagenetic system with high water- rock interaction.

کلیدواژه‌ها [English]

  • Diagenesis and primary mineralogy of the upper Jurassic carbonate rocks in the Tabas block
  1. -آدابی، م.ح.، 1390. ژئوشیمی رسوبی، انتشارات آرین زمین، چاپ دوم، 503 ص.
  2. -آقانباتی، ع.، 1385. زمین‌شناسی ایران، انتشارات سازمان زمین‌شناسی ایران، 586 ص.
  3. -افسا، ز.، میراب شبستری، غ. و خزاعی، ا.ر.، 1395. پتروگرافی، محیط رسوبی و ژئوشیمی واحد کربناته سازند قلعه دختر (ژوراسیک میانی-پسین) در برش کوه سید آباد شمال قاین، شرق ایران، مجله رسوب شناسی کاربردی، شماره 5، ص 89-105.
  4. -امینی، د.، 1391. مطالعه پتروگرافی و محیط رسوبی واحد کربناته سازند قلعه دختر (ژوراسیک میانی- پسین) در محل برش الگو (روستای قلعه دختر) واقع در شمال شرق رشته کوه شتری، شرق ایران، پایان‌نامه کارشناسی‌ارشد زمین‌شناسی- گرایش رسوب شناسی و سنگ شناسی رسوبی، دانشگاه بیرجند، 187 ص.
  5. -حاج ملاعلی، ع.، 1374. نقشه زمین‌شناسی 1:100000 راور، انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور، تهران.
  6. -سیدامامی، ک.، 1378. دانستنی‌های جدید پیرامون ردیف تبخیری"راور" و جایگاه چینه‌شناسی ردیف‌های رسوبی ژوراسیک میانی و بالایی در منطقه راور-کرمان (ایران مرکزی)، نشریه دانشکده فنی، جلد 33، شماره 4، اسفندماه 1378، 95 ص.
  7.  
  8.  
  9. -Adabi, M.H. and Rao, C.P., 1991. Petrographic and geochemical evidence for original aragonitic mineralogy of Upper Jurassic carbonates (Mozduran Formation), Sarakhs area of Iran, Journal of Sedimentary Geology, v. 72, p. 253-267.
  10. -Adabi, M.H. and Rao, C.P., 1996. Petrographic, elemental and isotope criteria for recognition of carbon mineralogy and climate during the Jurassic (e.g. from Iran and England): 13th Geological Conference, Australia, (Abst).
  11. -Adabi, M.H. and Asadi Mehmandosti, E., 2008. Microfacies and geochemistry of the Ilam Formation in the Tang-E Rashid area, Izeh, S.W. Iran, Journal of Asian Earth Sciences, v. 33, p. 267-277.
  12. -Adabi, M.H., 2009. Multistage dolomitization of Upper Jurassic Mozduran Formation, Kopet- Dagh Basin, N.E. Iran, Journal of Carbonates and Evaporates, v. 24, p. 16-32.
  13. -Adabi, M.H., Salehi, M.A. and Ghabeishavi, A., 2010. Depositional environment, sequence stratigraphy and geochemistry of Lower Cretaceous carbonates (Fahliyan Formation), South-West Iran, Journal of Asian Earth Sciences, v. 39, p. 148-160.
  14. -Adabi, M.H., Kakemem, U. and Sedaghi, A., 2016. Sedimentary facies, depositional environment, and sequence stratigraphy of Oligocene- Miocene shallow water carbonate from the Rig Mountain, Zagros Basin (SW Iran), Journal of Carbonates and Evaporites, v. 31, p. 69-85.
  15. -Adenan, N.B., Che Aziz, A. and Kamal Roslan, M., 2017. Diagenetic history of the Chuping limestone at Bukit Tangku Lembu, Perlis, Malaysia, Journal of Sains Malaysia, v. 46, p. 887-895.
  16. -Aghanabati, A., 1977. Etude geologique de la region de Kalmard (West of Tabas), Geological Survey of Iran, Report, v. 35, p. 1-230.
  17. -Aleali, M., Rahimpour-Bonab, H., Moussavi-Harami, S.R. and Jahani, D., 2013. Environmental and sequence stratigraphic implications for anhydrite textures: A case from Lower Triassic of the Central Persian Gulf, Asian Earth Science, p.1-65.
  18. -Alshahran, A.S. and Kendall, C.G.St.C., 2003. Holocene coastal carbonates and evaporites of the southern Arabian Gulf and their ancient analogues, Earth-Science Review, v. 61, p. 191- 243.
  19. -Alshahran, A.S., 2006. Sedimentological character and hydrocarbon parameters of the middle Permian to Early Triassic Khuff Formation, United Arab Emirates, GeoArabis, v. 11, p. 121-158.
  20. -Alshahran, A.S. and Whittle, L., 1995. Carbonates – evaporite sequences of the Late Jurassic, Southern and Southwestern Arabian Gulf: Bulletin of the American Associaion of Petroleum Geologists Bulletin, v. 79, p. 1608-1630.
  21. -Arzani, N., 2004. Diagenetic evolution of mudstones: Black shales to laminated limestones, an example from the Lower Jurassic of SW Britain, Sciences, Islamic Republic of Iran, v. 15, p. 257-267.
  22. -Arzani, N., 2006. Primary versus diagenetic bedding in the limestone-marl/shale alternations of the epeiric seas, an example from the Lower Lias (Early Jurassic) of SW Britain, Journal of Carbonates and Evaporites, v. 21, p. 94-109.
  23. -Armstrong, F.A., 2008. Why did nature choose manganese to make oxygen? Philosophical Transactions of the Royal Society Biological Sciences, v. 363, p. 1263-1270.
  24. -Bailey, T.K., Rosenthal, Y., McArthur, J.M., Van de Schootburg, B. and Thirlwall, M.F., 2003. Paleoceanographic changes of the Late Pliensbachain–Early Toarcian interval: a possible link to yhe genesis of Oceanic Anoxic Events, Journal of Earth and Planetary Science Letters, v. 212, p. 307-320.
  25. -Banner, J.L., Hanson, G.N. and Meyers, W.J., 1988. Determination of initial Sr isotopic composition of dolostone from the Burlington-Keokuk Formation (Mississippian): constrains from Cathodoluminescence, glauconite paragenesis of analytical methods. Journal of Sedimentary Petrology, v. 62, p. 1023-1043.
  26. -Brand, U. and Veizer, J., 1980. Chemical diagenesis of a multicomponent carbonate system, Journal of Sedimentary Petrology, v. 50, p. 1219-1236.
  27. -Brand, U. and Morrison, J.O., 1987. Biogeochemistry of fossil marine invertebrates, Journal of Geoscience of Canada, v. 14, p. 85-107.
  28. -Banner, J.L., 1995. Application of the trace element and isotope geochemistry of strontium to studies of carbonate diagenesis, Journal of Sedimentology, v. 42, p. 805-824.
  29. -Bates, R.L. and Jackson, J.A., 1987. Glossary of geology (3d edition): Alexandria, Va., American Geological Institute, 788 p.
  30. -Bathurst, R.G.C., 1975. Carbonate Sediments and their Diagenesis: Elsevier, North Holland, 658 p.
  31. -Budd, D.A., 1992. Dissolution of high- Mg calcite fossils and the formation of biomolds during mineralogical stabilization, Journal of Carbonates and Evaporites, v. 7, p. 74-81.
  32. -Calvert, S.E. and Pederson, T.F., 1996. Sedimentary geochemistry of manganese: Implication for the environment of formation of manganiferous black shales, Economic Geology, v. 91, p. 36-47.
  33. -Cantrell, D.L., 2006. Cortical fabrics of Upper Jurassic ooid, Arab Formation, Saudi Arabia: Implication for original carbonate mineralogy, Journal of Sedimentary Geology, v. 186, p. 157-170.
  34. -Choquette, P.W. and James, N.P., 1987. Diagenesis in limestones-3, the deep burial environment, Geoscience Canada, v. 14, p. 3-35.
  35. -El Hefnawi, M.A., Mashaly, A.O., Shalaby, B.N. and Rashwan, M.A., 2010. Petrography and geochemistry of Eocene limestone from Khashm Al-Raqaba area, El-Galala ElQibliya, Egypt. Journal of Carbonates and Evaporites, v. 25, p. 193- 202.
  36. -Fairchild, I.J. and Spiro, B., 1987. Petrological and isotopic implications of some contrasting Late Precambrian carbonates, NE Spitsbergen, Journal of Sedimentology, v. 34, p. 973-989.
  37. -Flugel, E., 2004. Microfacies of Carbonate Rocks Analysis Interpretation and Application, Springer-Verlag, 976 p.
  38. -Flugel, E., 2010. Microfacies of Carbonate Rocks, Analyses, Interpretation and Application, Springer Verlag, 976 p.
  39. -Frank, T.D. and Lohmann, K.C., 1996. Diagenesis of fibrous magnesian calcite marine cement: implications for the interpretation of 18O and 13C values from ancient equivalents, Journal of Geochim, Cosmochim, Acta, v. 60, p. 2427-2436.
  40. -Gieven, R.K. and Wilkinson, B.H., 1987. Dolomite abundance and stratigraphic age: constraints on rates and mechanisms of Phanerozoic dolostone formation: Journal of Sedimentary Petrology, v. 57, p. 1068-1078.
  41. -Ginsberg, R.N., 1957. Early diagenetic ad lithification of shallow water carbonate sediments in South Florida: in Regional aspects of carbonate deposition, Society of Economic, Journal of Paleontologists and Mineralogists Special Publications, p. 80-99.
  42. -Gonzales, L.A., Carpenter, S.J. and Lohmann, K.C., 1992. Inorganic Calcite Morphology: Roles of Fluid Chemistry and Fluid Flow, Journal of Sedimentary Petrology, v. 62, p. 382-399.
  43. -Grotzinger, J.P. and Read, J.F., 1983. Evidence for primary aragonite precipitation, lower Proterozoic (1.9 Ga) dolomite, Wopmay orogen, Northwest Canada, Journal of Geology, v. 11, p. 710-713.
  44. -Gundogan, I., Mehmet, O. and Tolga, D., 2005. Sedimentology, petrography and diagenesis of Eocene- Oligocene evaporates, the Tuzhisar Formation, South - West of Sivas basin, Turkey. Journal of Asian Earth Sciences, v. 25, p. 791-830.
  45. -Gutzmer, J. and Beukes N.J., 1996a. Karst-hosted fresh-water Paleoproterozoic manganese deposits, Postmasburg, Journal of South Africa Economic Geology, v. 91, p. 1435-1454.
  46. -Hardie, L.A., 1996. Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Journal of Geology, v. 24, p. 279-282.
  47. -Hashemi Azizi, S.H., Mirab Shabestari, G.R. and Khazaei, A.R., 2014. Petrography and geochemistry of Paleocene–Eocene limestones in the Ching-dar syncline, eastern Iran, Journal of Geoscience Frontiers, v. 5, p. 429-438.
  48. -Heydari, E., 2003. Hydro tectonic models of based on formation water geochemistry in north American sedimentary basins, in I.P., Montanez, J.M., Gregg and K.L. Shelton, (eds.): Basin-wide diagenetic patterns: Integrated Petrologic, Geochemical and Hydrologic Considerations, Tulsa, Oklohoma: SEPM Special Publications, p. 53-79.
  49. -Heydari, E., Arzani, N. and Hassanzadeh, J., 2008. Mantle plume: The invisible serial killer-Application to the Permian–Triassic boundary mass extinction, Journal of Palaeogeography, Palaeoclimatology, Palaeoecology, v. 264, p. 147-162.
  50. -Holland, H.D., 1972. The geologic history of seawater- and attempt to solve the problem, Journal of Geochim, Cosmochim, Acta, v. 36, p. 639-651.
  51. -Kabanov, P.B., 2000. Grain micritization as facial indicator in shallow water marine carbonate rocks, Byulletin’Moskovskogo Obshchestva Ispytateley Prirody, Journal of Otdel Geologicheskiy, v. 75, p. 39-48 (in Russian with English Abstract).
  52. -Kasprzyk, A. and Ortti, F., 1998. Palaeogeographic and burial controls on anhydrite genesis: the Badenian basin in the Carpthian Foredeep (Southern Poland, Western Ukrine), Sedimentology, v. 45, p. 889-907.
  53. -Insalaco, E., Virgone, A., Courme, B., Gaillot, J., Kamali, M., Moallemi, A., Lotfpour, M. and Monibi, S., 2006. Upper Dalan Member and Kangan Formation between the Zagros Mountains and offshore Fars, Iran: Depositional system, biostratigraphy and stratigraphic architecture, Geo Arabia, v. 11, p. 75-176.
  54. -Kaufman, A.J. and Knoll, A.H., 1995. Neo Proterozoic variations in the C isotope composition of seawater: stratigraphic and biogeochemical implications, Journal of Precambrian Research, v. 73, p. 27-49.
  55. -Khalifa, M.A., 2005. Lithofacies, diagenesis and cyclicity of the Lower Member of the Khuff Formation (Late Permian), A1 Qasim Province, Saudi Arabia, Journal of Asian Earth Sciences, v. 25, p. 719-734.
  56. -Khatibi Mehr, M. and Adabi, M.H., 2013. Microfacies and geochemical evidence for original aragonite mineralogy of a foraminifera-dominated carbonate ramp system in the late Paleocene to Middle Eocene, Alborz basin, Iran, Journal of Carbonates and Evaporites, v. 29, p. 155-175.
  57. -Land, L.S., 1980. The isotopic and trace element geochemistry of dolomite: the state of the art. In: Zenger, D.H., Dunham, J.B., Ethington, R.L. (eds.), Concepts and Models of Dolomitization, v. 28. SEPM Special Publications, Tulsa, Oklohoma, p. 87-110.
  58. -Land, L.S. and Hoops, G.K., 1973. Sodium in carbonate sediments and rocks: a possible index to the salinity of diagenetic solutions. Joural of Sedimentary and Petrology, v. 43, p. 614-617.
  59. -Longman, M.W., 1980. Carbonate diagenesis texture from near surface diagenetic environment, Journal of Marine and Petroleum Geology, v. 19, p. 159-198.
  60. -Maynard, J.B., 2010. The Chemistry of Manganese Ores through Time: A Signal of Increasing Diversity of Earth-Surface Environments, Journal of Economic Geology, v. 105, p. 535-552.
  61. -Mc Arthur, J.M., Donovan, D.T., Thirlwall, M.F., Fouke, B.W. and Matty, D., 2000. Strontium isotope profile of the early Toarcian (Jurassic) oceanic anoxic event, the duration of ammonite biozones, and belemnite paleotemperature, Journal of Earth and Science Letters, v. 179, p. 269-285.
  62. -Milliman, J.D., 1974. Marine Carbonates Recent Sedimentary Carbonates, Part 1, Springer-Verlag, Berlin, 375 p.
  63. -Moore, C.H., 1985. Upper Jurassic subsurface cements: a case history, in N. Schoneidermann, and P.M. Harris, des., Carbonate Cements, Tulsa, Oklohoma: SEPM Special Publications, v. 36, p. 291-308.
  64. -Moore, C.H., 1989. Carbonate diagenesis and prosity, Netherlans: Elsevier Science Publisher B.V., 338 p.
  65. -Morse, J.W. and Mackenzie, F.T., 1990. Geochemistry of Sedimentary Carbonates, Journal of Developments in Sedimentology 48, Elsevier, New York, 707 p.
  66. -Morison, J.O. and Brand, V., 1986. Geochemistry of recent marine invertebrates, Journal of Geoscience of Canada, v. 13, p. 237-254.
  67. -Okita, P.M. and Shanks, W.C., 1988. δ34S trends in sedimentary manganese deposits, Molango (Mexico) and Taojiang (China): evidence for mineralization in a dosed system: Abstracts, International Association of Sedimentologists Symposium on Sedimentology Related to Mineral Deposits, Beijing, China, p. 188-189.
  68. -Polgari, M., Okita, P.M. and Hein, J.R., 1991. Stable isotope evidence for the origin of the Úrkút manganese ore deposit, Hungary, Journal of Sedimentary Petrology, v. 61, p. 384-393.
  69. -Rao, C.P., 1981. Cementation in cold-water bryozoan sand, Tasmania, Australia, Journal of Marine Geology, v. 40, p. 23-33.
  70. -Rao, C.P., 1990. Petrography, trace elements and oxygen and carbon isotopes of Gordon Group carbonates (Ordovician), Florentine Valley, Tasmania, Australia, Journal of Sedimentary Geology, v. 66, p. 83-97.
  71. -Rao, C.P., 1991. Geochemical differences between subtropical (Ordovician), temperate (Recent and Pleistocene) and subpolar (Permian) carbonates, Tasmania, Australia, Journal of Carbonates and Evaporites, v. 6, p. 83-106.
  72. -Rao, C.P. and Amini, Z.Z., 1995. Faunal relationship to grain-size, mineralogy and geochemistry in recent temperate shelf carbonates, western Tasmania, Australia, Journal of Carbonates and Evaporites, v. 10, p. 114-123.
  73. -Rao, C.P., 1996. Elemental composition of marine calcite from modern temperate shelf brachiopods, bryozoans and bulk carbonates, eastern Tasmania, Australia, Journal of Carbonates and Evaporites, v. 11, p.1-18.
  74. -Rao, C.P. and Adabi, M.H., 1992. Carbonate minerals, major and minor elements and oxygen and carbon isotopes and their variation with water depth in cool, temperate carbonates, western Tasmania, Australia, Journal of Marine Geology, v. 103, p. 249-272.
  75. -Rao, C.P. and Jayawardane, M.P.J., 1994. Major minerals, elemental and isotopic composition in modern temperate shelf carbonates, eastern Tasmania, Australia: implications for the occurrence of extensive ancient non-tropical carbonates, Journal of Palaeogeography, Palaeoclimatology, Palaeoecology, v. 107, p. 49-63.
  76. -Rao, D.C.V., Santosh, M. and Kim, S.W., 2012. Cryogenian volcanic arc in the NW Indian Shield: Zircon SHRIMP U-Pb geochronology of felsic tuffs and implications for Gondwana assembly, Journal of Gondwana Research, v. 22, p. 36-53.
  77. -Rath, A., Exner, U., Tschegg, C., Grasemann, B., Laner, R. and Draganits, E., 2011. Diagenetic control of deformation mechanisms in deformation bands in a carbonate grainstone, Journal of American Association of Petroleum Geology Bulletin, v. 95, p. 1369-1381.
  78. -Roselas, I., Robles, S. and Quesada, S., 2004. Elemental and oxygen isotope composition of Early Jurassic Beleminites: salinity versus temperature signals, Journal of Sedimentary Research, v. 24, p. 342-354.
  79. -Roy, S., 2006. Sedimentary manganese metallogenesis in response to the evolution of the earth system, Journal of Earth-Science Review, v. 77, p. 273-305.
  80. -Rustichelli, A., Tondi, E., Agosta, F., Cilona, A. and Giorgioni, M., 2012. Development and distribution of bed-parallel compaction bands and pressure solution seams in carbonates (Bolognano Formation, Majella Mountain, Italy), Journal of Structural Geology, v. 73, p. 181-199.
  81. -Shanmugam, G. and Benedict, G.L., 1983. Manganese distribution in the carbonate fraction of shallow to deep marine lithofacies, Middle Ordovician, eastern Tennessee, Journal of Sedimentary Geology, v. 35, p.159-175.
  82. -Spencer, R.J. and Hardie, L.A., 1990. Control of seawater composition by mixing of river waters and mid ocean ridge hydrothermal brines, Journal of Geochemical Society Special Publications, v. 2, p. 409-419.
  83. -Stocklin, J., 1968. Structural history and tectonics of Iran, A review, Journal of American Association of Petroleum Geology Bulletin, v. 52, p. 1229-1258.
  84. -Tondi, E., Antonellini, M.A., Aydin, A., Marchegiani, L. and Cello, G., 2006. The role of deformation bands, stylolites and sheared stylolites in fault development in carbonate grainstones of Majella Mountain, Italy, Journal of Structural Geology, v. 28, p. 376-391.
  85. -Tsikos, H., Beukes, N.J., Moore, J.M. and Harris, C., 2003. Deposition, diagenesis and secondary enrichment of metals in the Paleoproterozoic Hotazel Iron Formation, Kalahari manganese field, South of Africa, Journal of Economic Geology, v. 98, p. 1449-1462.
  86. -Tucker, M.E., 2001. Sedimentary Petrology: An Introduction to the Origin of Sedimentary Rocks, Blackwell, 262 p.
  87. -Tucker, M.E. and Wright, P.V., 1990. Carbonate Sedimentology, Blackwell, Scientific Publication, London, 482 p.
  88. -Veizer, J., Holser, W.T. and Wilgus, C.K., 1980. Correlation of 13C/12C and 34S/32S secular variations, Journal of Geochim, Cosmochim, Acta, v. 44, p. 579-587.
  89. -Veizer, J., 1983. Trace elements and stable isotopes in sedimentary carbonates: in Reeder, R.J., (eds.), Carbonates: Mineralogy and Chemistry, Journal of Review in Mineralogy, Blacksburg, v. 11, p. 265-299.
  90. -Veizer, J., 1989. Strontium isotopes in sea water through time, Annual Review of Earth and Planetary Science Letters, v. 17, p. 141-167.
  91. -Veizer, J., Bruckschen, P., Pawellek, F., Diener, A., Podlaha, O.G., Carden, G.A.F., Jasper, T., Korte, C., Strauss, H., Azmy, K. and Ala, D., 1997. Oxygen isotope evolution of Phanerozoic seawater, Journal of Palaeogeography, Palaeoclimatatology, and Palaeoecology, v. 132, p. 159-172.
  92. -Warren, J., 2000. Dolomite: occurrence, evolution and economically important associations, Journal of Earth-Science Reviews, v. 52, p. 1-81
  93. -Wayne, M.A., 2008. Geology of Carbonate Reservoir: The identification, description, and characterization of hydrocarbon reservier in carbonate rocks, New Jersy, John Wiley and Sons Inc, 144 p.
  94. -Wei, L.M., 1995. Study on the micritization of carbonate grains by bacteria and algae, Journal of Acta Sedimentologica Sinica, v. 13, p. 89- 97 (in Chinese with English Abstract).
  95. -Wenzhofer, F., Adler, M., Kohls, O., Hensen, C., Strotmann, B., Boehme, S. and Schulz, H.D., 2001. Calcite dissolution driven by benthic mineralization in the deep-sea: In situ measurements of Ca 2+, pH, pCO2 and O2. Journal of Geochimica et Cosmochimica, Acta, v. 65, p. 2677- 2690.
  96. -Wierzbowski, H. and Joachimiski, M., 2007. Reconstruction of Late Bajocian-Bathonian marine palaeoenvironments using carbon and oxygen isotope ratios, Journal of Palaeogeography, Palaeoclimatology, Palaeoecology, v. 254, p. 523-540.
  97. -Wilkinson, B.H. and Given, R.K., 1986. Secular variation in abiotic marine carbonates: constraints on Phanerozoic atmospheric carbon dioxide contents and oceanic Mg/Ca ratios, Journal of Geology, v. 94, p. 321-333.
  98. -Zheng, X. and Spiro, C.J., 2005. Compaction of granular calcite by pressure solution at room temperature and effects of pore fluid chemistry, Journal of Rock Mechanics and Mining Sciences, v. 42, p. 950-960.