میکروفاسیس و محیط رسوبی سازند تیرگان در غرب حوضه رسوبی کپه داغ، شمال شرق ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

2 سازمان زمین‌شناسی و اکتشافات معدنی کل کشور، تهران، ایران

3 مرکز تحقیقات دیرینه‌شناسی و ژئوشیمی، مدیریت اکتشاف، شرکت ملی نفت ایران، تهران، ایران

چکیده

سازند تیرگان به سن بارمین -آپتین در حوضه رسوبی کپه داغ اصولا از سنگ‌های آهک تشکیل شده است. به-منظور مطالعه میکروفاسیس ها، محیط رسوبی سازند تیرگان در غرب حوضه رسوبی کپه داغ، سه برش چینه-شناسی در حوالی روستای اسطرخی، جوزک و کوه‌زاو اندازه‌گیری و نمونه‌برداری شده است. ضخامت سازند تیرگان در برش اسطرخی، جوزک و زاو به ترتیب 129، 362 و 639 متر است. در برش‌های روستای اسطرخی و جوزک، سازند شوریجه در زیر سازند تیرگان به صورت همشیب و پیوسته قرار گرفته است. همچنین مرز بالایی سازند تیرگان در برش اسطرخی با سازند سرچشمه به صورت هم شیب و پیوسته اما در برش جوزک به صورت گسله با سازند آبدراز است. در برش کوه زاو، مرز زیرین سازند تیرگان با سازند زرد به صورت پیوسته و هم شیب است ولی مرز بالایی آن به صورت پوشیده و نامشخص می‌باشد. براساس مطالعات پتروگرافی در منطقه مورد مطالعه، منجر به شناسایی 17 میکروفاسیس مختلف مربوط به 4 کمربند رخساره‌ای پهنه جزرومدی، لاگون، سد و دریای باز و 2 پتروفاسیس ساب ارکوز و کوارتزارنایت در این منطقه شده است. براساس مشاهدات صحرایی و مطالعات پتروگرافی و مقایسه تغییرات عمودی و جانبی رخساره‌ها مجموعه رخساره‌ای کربناته در یک رمپ کربناته هموکلاین در حالیکه لیتوفاسیس های سیلیسی کلاستیک در شرایطی که نرخ ورود آواری‌ها زیاد بوده در محیط‌های جزرومدی نهشته شده‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Microfacies and sedimentary environment of Tirgan Formation in the west of Kopeh-Dagh sedimentary basin, NE Iran

نویسندگان [English]

  • Atefeh Chenarani 1
  • Mohammad Vahidinia 1
  • Seyed Ali Agha Nabati 2
  • seyed Abolfazl Hosseini 3
1 Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
2 Geological Survey and Mineral Exploration of Iran, Tehran, Iran
3 Geochemical and Paleontological Studies and Research Building, Exploration Management, National Iranian Oil Company, Tehran, Iran
چکیده [English]

Extended abstract
In order to study of microfacies and depositional environment of the Tirgan Formation, three outcrop sections were measured and sampled near the Estarkhi, Jozak villages and Zaw Mountain. According to the field observations, petrographic studies and comparison of vertical and lateral changes of the facies, the carbonate facies assemblage was deposited in a homoclinal carbonate ramp and petrofacies were deposited in tidal environments at high detrital entry rates.
Introduction
The Kopet-Dagh Basin in northeast Iran, is an inverted basin (Allen et al., 2013) extending from the east of Caspian Sea to NE Iran, Turkmenistan and north Afghanistan (Afshar Harb, 1979; Buryakovsky et al., 2001). This basin separates Central Iran from the Turan plate (Alavi et al., 1997). Following the closure of Palaeo-Tethys in the Middle Triassic (Alavi et al., 1997) and the opening of Neo-Tethys during the Early to Middle Jurassic (Buryakovsky et al., 2001), the Kopet Dagh Basin formed in an extensional regime during the Early to Middle Jurassic (Garzanti and Gaetani, 2002). The objectives of this study are facies analysis and depositional model of the Tirgan Formation in the study areas.
Materials and methods
In this study, 3 outcrop sections from the Tirgan Formation (Fig 1), were measured bed-by-bed, and samples were taken systematically. Over 524 fresh carbonate samples were collected, from which 500 thin sections were made. Carbonates were classified using the Dunham (1962) scheme. Siliciclastic rocks were classified using the Folk (1980) scheme.
Results, Discussion & Conclusions
Petrographic studies in the study area, 17 different microfacies types have been distinguished in four facies belts including tidal-flat, lagoon, shoal, and open marine and 2 petrofacies including subarkose and quartzarenite. According to the field observations, petrographic studies, and comparison of vertical and lateral changes of the facies, the carbonate facies assemblage was deposited in a homoclinal carbonate ramp, while the siliciclastic lithofacies were deposited in tidal environments at high detrital entry rates.

کلیدواژه‌ها [English]

  • Tirgan Formation
  • Kopet-Dagh sedimentary basin
  • Depositional environment
  • Microfacies
-مرتضوی مهریزی، م.، 1386. چینه­نگاری سکانسی سازند­های شوریجه و تیرگان (کرتاسه تحتانی) در ناحیه سفید سنگ (شمال شرق فریمان). رساله کارشناسی­ارشد رسوب­شناسی، دانشگاه فردوسی مشهد، ٣١٠ ص.
-هاشمی کاخکی، ن.، 1385. تحول زمین­شناسی و بررسی چینه­شناسی و میکروفاسیس اورگونین سازند تیرگان در حوضه کپه داغ، رساله کارشناسی­ارشد چینه­شناسی و فسیل­شناسی، دانشگاه آزاد اسلامی، ١٢٠ ص.
 
-Abdel-Fattah, Z.A., Kora, M.A. and Raafat, S.A., 2018. Depositional environments and sequence stratigraphy of a mixed siliciclastic-carbonate ramp: An example from the cenomanian to Turonian Galala Formation in the northern Eastern Desert, Egypt: Journal of African Earth Sciences, v. 147, p. 352-373.
-Adachi, N., Ezaki, Y. and Liu, J., 2004. The origins of peloids immediately after the endpermian extinction, Guizhou Province, South China: Journal of Sedimentary Geology, v. 164, p. 161-178.
-Afshar-Harb, A., 1979. The stratigraphy, tectonics and petroleum geology of the Kopet Dagh region, northern Iran. Unpublished PhD thesis, Imperial College of Science and Technology, London, 316 p.
-Ahmad, A.H.M. and Bhat, G.M., 2006. Petrofacies, provenance and diagenesis of the dhosa sandstone member (Chari Formation) at Ler, Kachchh sub-basin,
Western India: Journal of Asian Earth Science, v. 27, p. 857-872.
-Alavi, M., Vaziri, H., Seyed-Emame, K. and Lasemi, Y., 1997. The Triassic and associated rocks of the Aghdarband areas in central and northeastern Iran as remnant of the southern Turanian active continental margin: GSA Bull, v. 109, p. 1563-1575.
-Allen, P.A. and Allen, J.R., 2013. Basin Analysis: Principles and Application to
Petroleum Play Assessment: Wiely- Blackwell, 655 p.
-Alsharhan, A.S. and Kendall, C.G.S.T.C., 2003. Holocene coastal carbonates and evaporites of the southern Arabian Gulf and their ancient analogues: Earth
Science Review, v. 61, p. 191-243.
-Bachmann, M. and Hirsch, F., 2006. Lower Cretaceous carbonate platform of the eastern Levant (Galilee and the Golan Heights): stratigraphy and second-order sealevel change: Cretaceous Research, v. 27, p. 487-512.
-Bádenas, B. and Aurell, M., 2010. Facies models of a shallow–water carbonate
ramp based on distribution of non-skeletal grains (Kimmeridgian, Spain):
Facies, v. 56, p. 89-110.
-Betzler, C., Pawellek, T., Abdullah, M. and Kossler, A., 2006. Facies and stratigraphic architecture of the Korallenoolith Formation in North Germany (Lauensteiner Pass, Ith Mountaines): Journal of Sedimentary Geology, v. 194, p. 61-75.
-Brandano, M., Morsilli, M., Parente, M., Vannucci, G., Bosellini, F.R. and
Mateu-Vicens, G., 2010. Rhodolith-rich lithofacies of the Porto Badisco
calcarenite (upper Chattian, Salento, Apulia, southern Italy): Italian Journal of
Geosciences, v. 129, p. 119-131.
-Buryakovsky, L.A., Chilinger, G.V. and Aminzadeh, F., 2001. Petroleum geology of the South Caspian Basin: Gulf Professional Publishing USA, 442 p.
-Cadjenovic, D., Kilibarda, Z. and Radulovic, N., 2008. Triassic to Late Jurassic evolution of the Adriatic carbonate platform and Budva Basin, Southern Montenegra: Journal of Sedimentary Geology, v. 24, p. 1-17.
-Carozzi, A.V., 1989. Carbonate Rock Depositional Modle: A Microfacies Approach: Prentice-Hall, 604 p.
-Dickson, J.A.D., 1966. Carbonate identification and genesis as revealed by staining: Journal of Sedimentary Petrology, v. 36, p. 441-505.
-Dill, H.G., Khishigsuren, S., Melcher, F., Bulgamaa, J., Bolorma, Kh., Botz, R. and Schwarz-Schampera, U., 2007. Facies related diagenetic alteration in acustrinedeltaic red beds of the Paleogene Ergeliin Zoo Formation (Erdene Sum area, S. Gobi, Mongolia): Journal of Sedimentary Geology, v. 181, p. 1-24.
-Dunham, R.J., 1962. Classification of carbonate rocks according to
depositional textures. In: Ham WE (ed) Classification of carbonate rocks.
American Association of Petroleum Geologists, Memoir, v. 1, p. 108-121.
-Einsele, G., 2000. Sedimentary Basin Evolution, Facies, and Sediment Budget (2 ndedition): Springer-Verlag, 292 p.
-Flügel, E., 1982. Microfacies Analysis of Limestone: Berlin, Springer-Velag, 663 p.
-Flugel, E., 2010. Microfacies of carbonate Rocks Analysis Interpretation and Application: Springer-Verlog, 976 p.
-Folk, R.L., 1965. Some aspects of recrystallization in ancient limestones. In: Dolomitization and limestone diagenesis (Ed. By L.C., Pray and R.C., Murray): Society of Economic Paleontologists and Mineralogisis, v. 13, p. 14-48.
-Garzanti, E. and Gaetani, M., 2002. Unroofing history of late Paleozoic magmatic arcs within the Turan Plate (Tuarkyr, Turkmenistan): Journal of Sedimentary Geology, v. 151, p. 67-87.
-Guo, C., Chen, D., Song, Y., Zhou, X., Ding, Y. and Zhang, G., 2018.
Depositional environments and cyclicity of the Early Ordovician carbonate
ramp in the western Tarim Basin (NW China): Journal of Asian Earth Sciences,
v. 158, p. 29-48.
-Heldt, M., Bachmann, M. and Lehmann, J., 2008. Microfacies, biostratigraphy and geochemistry of the hemipelagic BarremianAptian in north central Tunisia: Influence of the OAE 1a on the southern Tethys margin: Palaeos, v. 261, p. 246-260.
-Irwin, M.L., 1965. General theory of epeiric clear water sedimentation: American Association of Petroleum Geologists Bulletin, v. 49, p. 445-459.
-Khila, A., Ouaja, M. and Zargouni, F., 2018. Coniacian carbonate-conglomerate
event on carbonate ramps from the Northern Chotts ranges, South Tunisia:
facies geometry and tectono-sedimentary evolution: Arabian Journal of Geosciences, https:// doi.org/ 10.1007/ s12517- 018 - 3388-7.
-Li, M., Song, H.J., Tian, L., Woods, A.D., Dai, X. and Song, H.Y., 2018a.
Lower Triassic deep sea carbonate precipitates from South Tibet, China:
Sedimentary Geology, v. 376, p. 60-71.
-Li, M., Song, H.J., Tian, L., Woods, A.D., Dai, X. and Wignall, P.B., 2019.
Facies and evolution of the carbonate factory during the Permian–Triassic crisis in South Tibet, China. Sedimentology: https://doi.org/10.1111/sed.12619.
-Marangon, A., Gattolin, G., Della Porta, G. and Preto, N., 2011. The Latemar: A flattopped, steep fronted platform dominated by microbialites and synsedimentary cements: Sedimentary Geology, v. 240, p. 97-114.
-Moussavi-Harami, R. and Brenner, R.L., 1990. Lower Cretaceous (Neocomian) fluvial deposits in eastern Kopet- Dagh Basin, northeastern Iran: Cretaceous Research, v. 11, p. 163- 174.
-Read, J.F., 1982. Carbonate margins of passive (extensional) continental margins types, characteristics and evolution: Tentonophysics, v. 81, p. 195-212.
-Sequero, C., Bádenas, B. and Aurell, M., 2018. Facies mosaic in the inner areas of a shallow carbonate ramp (Upper Jurassic, Higueruelas Fm, NE Spain): Facies, https://doi.org/10.1007/s10347-018-0521-8.
-Slootman, A., Cartigny, M.J.B., Boer, P.L. and Moscariello, A., 2016.
Depositional character of submarine dunes on a Pleistocene
distally steepened carbonate ramp (Favignana Island, Italy), Marine and River Dune Dynamics – MARID V – 4 & 5 April 2016 – North Wales, UK.
-Tesch, P., Reece, R.S., Pope, M.C. and Markello, J.R., 2018. Quantification of
architectural variability and controls in an Upper Oligocene to Lower Miocene carbonate ramp, Browse Basin, Australia: Marine and Petroleum Geology, v. 91, p. 432-454.
-Tomassetti, L., Petracchini, L., Brandano, M., Trippetta, F. and Tomassi, A.,
2018. Modeling lateral facies heterogeneity of an upper Oligocene carbonate ramp (Salento, southern Italy): Marine and Petroleum Geology, v. 96, p. 254-270.
-Tucker, M.E., 2001. Sedimentary Petrology: an introduction to the
origion of sedimentary rocks: Blackwell, Scientific Publication, London,
260 p.
-Tucker, M.E. and Wright, V.P., 1990. Carbonate Sedimentology: Blackwell, 482 p.
-Valle, B., Bó, P.F.D., Mendes, M., Favoreto, J., Rigueti, A.L., Borghi, L. and Silva, R., 2019. Stratigraphic evolution of a Brazilian carbonate
platform during the Cretaceous: the late Albian–early Turonian
of the Sergipe–Alagoas Bas: Facies, https://doi.org/10.1007/s10347-018-0543-2.
-Walter, L.M. and Wilmsen, M., 2003. Sequence stratigraphy and palaeoceanography of the Cenomanian stage in northern Germany: Cretaceous Research, v. 24, p. 525-568.
-Wilson, J.L., 1975. Carbonate Facies in Geological History: Springer -Verlag, Berlin, 471 p.