-اصغری، ا.، 1386. تفکیک دگرسانی در کانسار مس پورفیری سونگون براساس شبیهسازی زمین آماری با استفاده از دادههای سیالات درگیر، رساله دکتری، دانشگاه صنعتی امیرکبیر.
-رمضانی، ط.، معانی جو، م.، اسدی، س.، لنتز، د. و پیروزنیا، ن.، 1397. مقایسه سیستمهای مس پورفیری سونگون و کیقال، شمال غرب ایران: با تأکید بر مطالعه سیالات درگیر. زمینشناسی اقتصادی، دوره 10، شماره 2، ص 403-424.
-شفیعی، ز.، عباس زاده، م.، سلطانی محمدی، س. و دهقانی جوزم، م.، 1398. مقایسه عملکرد شبکه عصبی مصنوعی و ماشین بردار پشتیبان در تهیه مدل سه بعدی زونهای کانیسازی (مطالعه موردی: کانسار مس پورفیری میدوک، ایران، نشریه مهندسی معدن، دوره 14، شماره 45، ص 13-24.
-شهرابی، ج. و ذوالقدر شجاعی، ع.، 1390. داده کاوی پیشرفته: مفاهیم و الگوریتمها، انتشارات جهاد دانشگاهی واحد دانشگاه امیرکبیر، 472 ص.
-عباسزاده، م.، 1393. مدلسازی سهبعدی دادههای حاصل از مطالعات سیالات درگیر با استفاده از الگوریتمهای یادگیری ماشین، رساله دکتری، دانشگاه صنعتی امیرکبیر.
-عباس زاده، م.، هزارخانی، ا. و سلطانی محمدی، س.، 1398. مرزبندی زونهای دگرسانی پتاسیک و فیلیک براساس نتایج حاصل از مدلسازی سهبعدی دادههای سیالات درگیر به روش شبکههای عصبی مصنوعی، فصلنامه علمی پژوهشی علوم زمین، دوره 29، شماره 113، ص 115-122.
-عباس زاده، م.، 1398. تخمین عیار کانسار فسفات اسفوردی با روش رگرسیون بردار پشتیبان، نشریه مهندسی منابع معدنی، دوره 4، شماره 4، ص 1-16.
-Abbaszadeh, M., Hezarkhani, A. and Soltani-Mohammadi, S., 2013. An SVM Based Machine Learning Method for the Separation of Alteration Zones in Sungun Porphyry Copper Deposit: Chem Erde-Geochem, v. 73, p. 545-554.
-Abbaszadeh, M., Hezarkhani, A. and Soltani-Mohammadi, S., 2015. Classification of Alteration Zones Based on Whole- Rock Geochemical Data Using Support Vector Machine: Journal of the Geological Society of India., v. 85, p. 500-508.
-Abbaszadeh, M., Hezarkhani, A. and Soltani Mohammadi, S., 2016. Proposing Drilling Locations Based on the 3D Modeling Results of fluid Inclusion Data Using the Support Vector Regression Method: Journal of Geochemical Exploration, v. 165, p. 23-34.
-Aghazadeh, M., Hou, Z., Badrzadeh, Z. and Zhou, L., 2015. Temporal–Spatial Distribution and Tectonic Setting of Porphyry Copper Deposits in Iran: Constraints from Zircon U–Pb and Molybdenite Re-Os Geochronology: Ore Geology Reviews, v. 70, p. 385-406.
-Allahkarami, E., Nuri, O., Abdollahzadeh, A.A., Rezai, B. and Chegini, M., 2016. Estimation of Copper and Molybdenum Grades and Recoveries in the Industrial Flotation Plant Using the Artificial Neural Network: International Journal of Nonferrous Metallurgy, v. 5, p. 23-32.
-Asgharı, O. and Hezarkhanı, A., 2010. Investigations of alteration zones based on fluid inclusion microthermometry at Sungun porphyry copper deposit, Iran: Bulletin of the Mineral Research and Exploration , v. 140, p. 19-34.
-Baldwin, J.T., Swain, H.D. and Clark, G.H., 1978. Geology and Grade Distribution of the Panguna Porphyry Copper Deposit, Bougainville, Papua New Guinea: Economic Geology, v. 73, p. 690-702.
-Barnes, H.L., 1997. Geochemistry of Hydrothermal Ore Deposits, 3rd Edition: John Wiley Publications, New York.
-Calagari, A.A. and Hosseinzadeh, G., 2006. The Mineralogy of Copper-Bearing Skarn to the East of the Sungun-Chay River, East-Azarbaidjan, Iran: Journal of Asian Earth Sciences,v. 28, p. 423-438.
-Calagari, A.A., 1997. Geochemical, Stable Isotope, Noble Gas, and Fluid Inclusion Studies of Mineralization and Alteration at Sungun Porphyry Copper Deposit, East-Azarbaidjan, Iran: Implication for Genesis: Ph.D. Thesis, Manchester University.
-Calagari, A.A., 2004. Fluid Inclusion Studies in Quartz Veinlets in the Porphyry Copper Deposit at Sungun, East-Azarbaidjan, Iran: Journal of Asian Earth Sciences, v. 23, p. 179-189.
-Chatterjee, S., Bandopadhyay, S. and Machuca, D., 2010. Ore Grade Prediction Using a Genetic Algorithm and Clustering Based Ensemble Neural Network Model: Mathematical Geosciences, v. 42, p. 309-326.
-Dutta, S., 2006. Predictive Performance of Machine Learning Algorithms for Ore Reserve Estimation in Sparse and Imprecise Data: Ph.D. Thesis, University of Alaska Fairbanks.
-Dutta, S., Bandopadhyay, S., Ganguli, R. and Misra, D., 2010. Machine Learning Algorithms and Their Application to Ore Reserve Estimation of Sparse and Imprecise Data: Journal of Intelligent Learning Systems & Applications, v. 2, p.86-96.
-Etminan, H., 1977. The Discovery of Porphyry Copper-Molybdenum Mineralization Adjacent to Songun Village in the Northwest of Ahar (Eastern Azerbaijan, Iran) and a Proposed Program for its Detailed Exploration. Geological Survey of Iran: Confidential Report, Ministry of Industries and Mines.
-Frohlich, H. and Zell, A., 2005. Efficient Parameterselection for Support Vector Machines in Classification and Regression via Model-Based Global Optimization: Proceedings. 2005 IEEEInternational Joint Conference on Neural Networks, Montreal, Que., v. 3, p. 1431-1436.
-Hassanpour, S., 2017. The Sungun porphyry magma resource and the 120,000-year difference in age between the main stock and the first dike: New evidence from 87Sr/86Sr, 143Nd/144Nd and Pb, SHRIMP U–Pb zircon dating in NW Iran: Iranian Journal of Earth Sciences, v. 9(2), p. 94-104.
-Henrique, B.M., Sobreiro, V.A. and Kimura, H., 2018. Stock Price Prediction Using Support Vector Regression on Daily and up to the Minute Prices: The Journal of Finance and Data Science, v.4, p.183-201.
-Hezarkhani, A., 1997. Physicochemical Controls on Alteration and Copper Mineralization in the Sungun Porphyry Copper System, Iran: Ph.D. Thesis, University of Mcgill.
-Hezarkhani, A. and Williams-Jones, A.E., 1998. Controls of Alteration and Mineralization in the Sungun Porphyry Copper Deposit, Iran: Evidence from Fluid Inclusions and Stable Isotopes: Economic Geology, v. 93, p. 651-670
-Hosseinzadeh, M., Alavi, S. and Moayyed, M., 2014. Petrography and petrology of the Sungun porphyry copper deposit and post mineralization dykes with a view to Skarn mineralization (north of Varzeghan, East Azarbaijan): Iranian Journal of Petrology, v. 5(17), p. 17-32.
-Hsu, C.W., Chang, C.C. and Lin, C.J., 2010. A Practical Guide to Support Vector Classification: Technical Report, Department of Computer Science and Information Engineering, University of National Taiwan, Taipei, p. 1-12.
-Jafrasteh, B., Fathianpour, N. and Suárez, A., 2018. Comparison of machine learning methods for copper ore grade estimation: Computers & Geosciences ,v. 22, p. 1371-1388.
-Kaplan, U.E. and Topal, E., 2020. A New Ore Grade Estimation Using Combine Machine Learning Algorithms: Minerals, v. 10(10), 847 p.
-Kecman, V., 2000. Learning and Soft Computing: Support Vector Machines, Neural Network and Fuzzy Logic Models: Mit Publishers, 576 p.
-Kecman, V., 2004. Support Vector Machines Basics, the University of Auckland, School of Engineering, 616 p.
-Lescuyer, J.L., Riou, R., Babakhani, A., Alavi Tehrani, N., Nogol, M.A., Dido, J. and Gemain, Y.M., 1978. Geological Map of the Ahar Area: Geological Survey of Iran.
-Manthira Moorthi, S., Misra, I., Kaur, R., Darji, N.P. and Ramakrishnan, R., 2011. Kernel-Based Learning Approach for Satellite Image Classification Using Support Vector Machine: IEEE Recent Advances in Intelligent Computational Systems, p. 107-110.
-Matias, J.M., Vaamonde, A., Taboada, J. and Gonzalez-Manteiga, W., 2004. Support Vector Machines and Gradient Boosting for Graphical Estimation of a Slate Deposit: Stochenvir Res and Risk Ass, v. 18, p. 309-323.
-Mehrpartou, M., 1993. Contributions to the Geology, Geochemistry, Ore Genesis and Fluid Inclusion Investigations on Sungun Cu-Mo Porphyry Deposit, (North-West of Iran): Ph.D. Thesis, Hamburg University, Hamburg, Germany.
-Nezamolhosseini, S.A., Mojtahedzadeh, S.H. and Gholamnejad, J., 2017. The Application of Artificial Neural Networks to Ore Reserve Estimation at Choghart Iron Ore Deposit: Analytical and Numerical Methods in Mining Engineering, v. 6, p. 73-83.
-Pars Olang Engineering Consultant Company, 2006. Pars Olang Modeling and Reserve Estimation Report of Sungun Copper Mine, Tehran.
-Pozdnoukhov, A., 2005. Support Vector Regression for Automated Robust Spatial Mapping of Neural Radioactivity: Journal of Applied Gis, v. 1)2), p. 75-93.
-Simmonds, V., Moazzen, M. and Mathur, R., 2017. Constraining the timing of porphyry mineralization in northwest Iran in relation to Lesser Caucasus and Central Iran; Re–Os age data for Sungun porphyry Cu–Mo deposit: International Geology Review, v. 59, p. 25-37.
-Smola, A.J. and Scholkopf, B., 1998. A Tutorial on Support Vector Regression: NeuroCOLT Technical Report NC-TR-98-030, Royal Holloway College, University of London, UK.
-Smola, A.J. and Scholkopf, B., 2004. A Tutorial on Support Vector Regression: Statistics and Computing, v. 14, p. 199-222.
-Soliman, O.S. and Mahmoud, A.S., 2012. A Classification System for Remote Sensing Satellite Images Using Support Vector Machine with Non-Linear Kernel Functions: 8th International Conference on Informatics and Systems (INFOS), p. 181-187.
-Soliman, O.S., Mahmoud, A.S. and Hassan, S.M., 2012. Remote Sensing Satellite Images Classification Using Support Vector Machine and Particle Swarm Optimization: Third International Conference on Innovations in Bio-Inspired Computing and Applications, p. 280-285.
-Soltani, S., Bakhshandeh Amnieh, H. and Bahadori, M., 2012. Investigating Ground Vibration to Calculate the Permissible Charge Weight for Blasting Operations of Gotvand-Olya Dam Underground Structures: Archives of Mining Science, v. 56, p. 701-710.
-Son, Y.J., Kim, H.G., Kim, E.H., Choi, S. and Lee, S.K., 2010. Application of Support Vector Machine for Prediction of MedicationAdherence in Heart Failure Patients: Healthcare Informatics Research, v. 16, p. 253-259.
-Sugumaran, V. and Ramachandran, K.I., 2011. Effect of Number of Features on Classification of Roller Bearing Faults Using SVMand PSVM: Expert Systems with Applications, v. 38, p. 4088-4096.
-Sun, L., Xiao, K., Gao, Y., Wang, R. and Xing, S., 2011. 3D Modeling of Fluids Inclusion Data of Caixiashan Pb-Zn Deposit, East Tianshan Area, China: IAMG, Austria.
Twarakavi, N. C. Misra, D. and Bandopadhayay, S., 2006. Prediction of Arsenic in Bedrock Derived Stream Sediments at a Gold Mine Site under Conditions of Sparse Data: Natural Resources Research, v. 15, p.15-26.
-Yu, P.S., Chen, S.T. and Chang, I.F., 2006. Support Vector Regression for Real-Time Flood Stage Forecasting: Journal of Hydrology, v. 328, p. 704-716.
-Zendehboudi, A., Baseer, M.A. and Saidur, R., 2018. Application of Support Vector Machine Models for Forecasting Solar and Wind Energy Resources: A Review: Journal of Cleaner Production, v. 199, p. 272-285.
-Zhang, G.P., Patuwo, B.E. and Hu, M.Y., 1998. Forecasting with Artificial Neural Networks: the State of the art: International Journal of Forecasting, v. 1)14(, p. 35-62.
-Zhen-Yuan, J., Jian-Wei, M., Fu-Ji, W. and Wei, L., 2011. Hybrid of Simulated Annealing and SVMfor Hydraulic Valve Characteristics Prediction: Expert Systems with Applications,v. 38, p. 8030-8036.
-Zuo, R. and M.Carranza, E.J., 2011. Support Vector Machine: A Tool for Mapping Mineral Prospectivity: Computers & Geosciences, v. 37, p. 1967-1975.