ژئوشیمی و پترولوژی توده‌های آلکالن سینیتی در منطقه بستان‌آباد میانه (شمال غرب ایران)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

2 گروه زمین‌شناسی، دانشگاه پیام نور، تهران، ایران

چکیده

توده‌های نفوذی در محور بستان آباد-میانه با امتداد شمال‌غرب-جنوب‌شرق رخنمون دارند. این سنگ‌ها در نقشه‌های زمین‌شناسی عمومی گرانیت معرفی شده اما مطالعات دقیق در این تحقیق حضور سینیت‌ها را نیز نشان داده که پترولوژی آنها به منظور بررسی تکوین کوهزایی زاگرس در شمال غرب ایران بررسی شد. سنگ‌های آذرین منطقه حاصل ماگماتیسم کمربند ماگمایی ارومیه-دختر بوده و شامل سنگ‌های نفوذی، آتشفشانی و پیروکلاستیک به همراه مجموعه‌های رسوبی است. سینیت‌های مورد مطالعه در محدوده سری پتاسیم بالا و شوشونیتی قرار گرفتند. همچنین براساس شاخص اشباع آلومین، نمونه‌های مورد مطالعه در محدوده متآلومین قرار دارند. از نظر خصوصیات ژئوشیمیائی سینیت‌های مورد مطالعه از عناصری نظیر Th)، K، U، Pb، Nd، Rb و Sm) غنی‌شدگی نشان می‌دهند، در حالی که از عناصری مانند (Ba، Nb، La، Ce، Sr، P، Zr، Eu، Ti و Y) تهی‌شدگی نشان می‌دهند. غنی‌شدگی عناصری مانند Th و Rb و تهی‌شدگی عناصری مانند Nb و Ti در الگوی عناصر کمیاب از ویژگی‌های ماگماهای ایجاد شده در محیط‌های تکتونیکی وابسته به فرورانش است. همچنین تهی‌شدگی عناصر ناسازگار مانند Nb، Ti، Sr و غنی‌شدگی عناصر ناسازگار K، Th، Rb، La و U بیانگر آلودگی پوسته‌ای در این سنگ‌هاست. بنابراین تشکیل این سنگ‌ها از یک مذاب گوشته‌ای که توسط سیالات یا مذاب‌های حاصل از ورقه فرورو غنی‌سازی شده و طی صعود با مواد پوسته‌ای آلایش یافته در یک محیط برخوردی می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Geochemistry and petrology of alkaline syenite intrusion in Bostanabad-Mianeh axis (NW of Iran

نویسندگان [English]

  • شایسته آزادبخت 1
  • فریبرز مسعودی 1
  • Vahid Ahadnejad 2
1 Department of Geology, Faculty of Earth Sciences, University of Shahid Beheshti, Tehran,
2 Department of Geology, Payame Noor University (PNU), Tehran, Iran
چکیده [English]

Introduction
Intrusive masses are exposed in the Bostanabad-Mianeh axis with the northwest-southeast trend. The rocks are known as granite in general geological maps. Detailed studies in this study have also shown the presence of syenites which their petrology was considered in order to investigate the Zagros orogeny development in northwestern of Iran. The magmatic rocks of the region are the result of magmatism of the Uromieh-Dokhtar magmatic belt and include intrusive, volcanic and pyroclastic rocks with sedimentary units. Syenites of the Bostanabad-Mianeh axis are along with large volume of granites. Syenites provides important information about the interaction of the crust-lithosphere mantle, magma evolution processes, tectonics and crustal growth. In this study, syenites are divided from granitic rocks and their geochemical properties have been investigated to determine their tectono-magmatic and Petro-genetic conditions.
Research method
During field study, samples from the syenite and granite outcrops were collected for petrography, geochemistry and determining magmatic series and the magma origin. For geochemical studies, 13 samples of intrusive rocks with the lowest degree of alteration were chemically analyzed by ICP-MS and ICP-OES methods in the Act Lab Ontario Canada.
Discussion and Conclusion
The Bostanabad-Mianeh axis in northwestern of Iran and in the East Azerbaijan province is part of the Cenozoic magmatism of the Lesser Caucasus towards southeastern Iran. Magmatism is related to the subduction of the northern ocean of Neotethys during the collision of the Arabian Plateau with Eurasia and its subsequent events. The presence of arc-type magmatism in the regions of Azerbaijan, the Alborz Mountains, Talesh and the Lesser Caucasus all indicate the subduction of the Neotethys branch with the Eurasian plate. Due to the LILE and LREE enrichment and the HREE depletion, the source of the magmas for the studied syenites are originated from an enriched mantle source in the continental lithosphere in the subduction zone belonging to post orogenic extension events. Consequently, the formation of the intrusions is related to mantle melting which is enriched and fed by fluids and melts and finally contaminated with crustal material during the ascent.

کلیدواژه‌ها [English]

  • Syenite
  • Tectonic environment
  • Subduction
  • Magmatism
  • Mianeh
-عمیدی، م.، 1979. نقشه زمین‌شناسی زیر پهنه میانه در مقیاس 250000/1. سازمان زمین‌شناسی و اکتشافات معدنی ایران.
-معین‌وزیری، ح.، 1999. دیباچیه‌ای بر ماگماتیسم ایران، انتشارات دانشگاه خوارزمی تهران، ص 440.
 
 
 
-Adamia, S.A., Chkhotua, T., Kekelia, M., Lordkipanidze, M., Shavishvili, I. and Zakariadze, G., 1981. Tectonics of Caucasus and adjoining regions: implications for the evolution of the Tethys Ocean. J. Struct. Geol., v. 3, p. 437-447.
-Aftabi, A. and Atapour, H., 2000. Regional aspects of shoshonitic volcanism in Iran. Episodes, v. 23, p. 119-125.
-Agard, P., Monie, P., Gerber, W., Omrani, J., Molinaro, M., Meyer, B. and Yamato, P., 2006. Transient, synobduction exhumation of Zagros blueschists inferred from P-T, deformation, time, and kinematic constraints: Implications for Neotethyan wedge dynamics. Journal of Geophysical Research: Solid Earth, 111(B11).
-Alavi, M., 2004. Regional stratigraphy of the Zagros folded-thrust belt of Iran and itsproforeland evolution. Am. J. Sci., v. 304, p. 1-20.
-Amidi, S.M., Emami, M.H. and Michel, R., 1984. Alkaline character of Eocene volcanism in the middle part of Iran and its geodynamic situation. International Journal of Earth Sciences, v. 73, p. 917-932.
-Andersson, U.B., Eklund, O., Frojdo, S. and Konopelko D., 2006. 1.8 Ga magmatism in the Fennoscandian Shield; lateral variations in subcontinental mantle enrichment. Lithos 86, 110-136. -Wolff, J.A., 2017. On the syenite-trachyte problem. Geology, v. 45, p. 1067-1070.
-Ashrafi, N., Jahangiri, A., Hasebe, N. and Eby, G.N., 2018. Petrology, geochemistry and geodynamic setting of Eocene-Oligocene alkaline intrusions from the Alborz-Azerbaijan magmatic belt, NW Iran.
-Azizi, H. and Moinevaziri, H., 2009. Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran. J. Geodyn., v. 47, p. 167-179.
-Berberian, F., Muir, I.D., Pankhurst, R.J. and Berberian, M., 1982. Late Cretaceous and early Miocene Andean type plutonic activity in northern Makran and central Iran. Journal of the Geological Society London, v. 139, p. 605-614.
-Berberian, F., Muir, I.D., Pankhurst, R.J. and Berberian, M., 1982. Late Cretaceous and early Miocene Andean type plutonic activity in northern Makran and central Iran. J. Geol. Soc. Lond., v. 139, p. 605-614.
-Bourdon, E., Eissem, J.P., Monzier, M., Robin, C., Martin, H., Cotton, J. and Hall, M.L., 2002. Adakite-like lavas from Antisana Volcano (Ecuador): evidence for slab melt metasomatism beneath the Andean northern volcanic zone. J. Petrol., v. 43, p. 199-217.
-Boynton, W.V., 1984. Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (eds) Rare Earth Element Geochemistry. Elsevier, Amsterdam, p. 63-114.
-Brotzu, P., Gomes, C.B., Melluso, L., Morbidelli, L., Morra, V. and Ruberti, E., 1997. Petrogenesis of coexisting SiO2-undersaturated to SiO2-oversaturated felsic igneous rocks: the alkaline complex of Itatiaia, Southeastern Brazil. Lithos, v. 40, p. 133-156.
-Castro, A., Aghazadeh, M., Badrzadeh, Z. and Chichorro, M., 2013. Late Eocene–Oligocene post-collisional monzonitic intrusions from the Alborz magmatic belt, NW Iran: an example of monzonite magma generation from a metasomatized mantle source. Lithos, v. 180-181, p. 109-127.
-Chakhmouradian, A.R., Mumin, A.H., Demény, A. and Elliott, B., 2008. Postorogenic carbonatites at Eden Lake, Trans-Hudson Orogen (northern Manitoba, Canada): Geological setting, mineralogy and geochemistry. Lithos, v. 103, p. 503-526.
-Chapman, R.W. and Chapman, C.A., 1940. Cauldron subsidence at Ascutney Mountain, Vermont. Bulletin of the Geological Society of America, v. 51, p. 191-212.
-Chapman, R.W. and Williams, C.R., 1935. Evolution of the White Mountain Magma Series. American Mineralogist, v. 20, p. 502-530.
-Chiu, H.Y., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S., Khatib, M.M. and Iizuka, Y., 2013. Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, v. 162-163, p. 70-87.
-Conceicao, R.V. and Green, D.H., 2004. Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite + pargasite lherzolite. Lithos, v. 72, p. 209-229. -Wilson, M., 1989. Igneous Petrogenesis. Unwin Hyman Inc., London, 466 p.
-Cox, K., Bell, J.D. and Pankhurst, R.Y., 1979. The Interpretion of Igneous Rocks. George Allen and Uniwin, London.
-Dawson, J.B., 1987. The kimberlite clan: relationship with olivine and leucitite lamproites, and inferences for upper mantle metasomatism. In: Fitton, J.G., Upton, B.G. (Eds.), Alkaline Igneous
-Eby, G.N., Woolley, A.R., Din, V. and Platt, G., 1998. Geochemistry and petrogenesis of Nepheline syenites: Kasungu-Chipala, Ilomba, and Ulindi nepheline syenite intrusions, North Nyasa Alkaline Province. Malawi. J. Petrol., v. 39, p. 1405-1424.
-Farhoudi, G., 1978. A comparison of Zagros geology to island arcs. J. Geol., v. 86, p. 323-334.
-Fitton, J.G., 1987. The Cameroon line, West Africa: a comparison between oceanic and continental alkaline volcanism. In: In: Fitton, J.G., Upton, B.G.J. (Eds.), Alkaline Igneous Rocks 30. Geological Society, London, p. 413-431.
-Fletcher, C.J.N. and Beddoe-Stephens, B., 1987. The petrology, chemistry and crystallization history of the Velasco alkaline province, eastern Bolivia, in: Fitton, J.G., Upton, B.G.J. (eds.), Alkaline Igneous Rocks. Geol. Soc. Spec. Publ., v. 30, p. 403-413.
-Gao, Y., Hou, Z., Kamber, B.S., Wei, R., Meng, X. and Zhao, R., 2007, Adakite-like porphyries from the southern Tibetan continental collision zones: Evidence for slab melt metasomatism: Contributions to Mineralogy and Petrology, v. 153, p. 105-120. doi: 10.1007/s00410-006-0137-9.
-Ghasemi, A. and Talbot, C.J., 2006. A new tectonic scenario for the Sanandaj–Sirjan zone (Iran). Journal of Asian Earth Sciences, v. 26, p. 683-693.
-Halama, R., Vennemann, T., Siebel, W. and Markl, G., 2005. The Gronnedal-Ika carbonatite-syenite complex, south Greenland: Carbonatite formation by liquid immiscibility. J. Petrol., v. 46, p. 191-217.
-Hari, K.R., Chalapathi Rao, N.V., Swarnkar, V. and Hou, G., 2014. Alkaline feldspar syenites with shoshonitic affinities from Chhotaudepur area: implication for mantle metasomatism in the Deccan large igneous province. Geoscience Frontiers, v. 5, p. 261-276.
-Hari, K.R., Chalapathi Rao, N.V., Swarnkar, V. and Hou, G., 2014. Alkaline feldspar syenites with shoshonitic affinities from Chhotaudepur area: implication for mantle metasomatism in the Deccan large igneous province. Geoscience Frontiers, v. 5, p. 261-276.
-Harker, A., 1909. The Natural History of Igneous Rocks. Methneu, London, 344 p.
-Harris, N.B.W., Duyverman, H.J. and Almond, D.C., 1983. The trace element and isotope geochemistry of the Sabaloka igneous complex, Sudan. J. Geol. Soc., v. 140, p. 245-256.
-Hassanzadeh, J., Ghazi, A.M., Axen, G. and Guest, B., 2002. Oligomiocene mafic-alkaline magmatism north and northwest of Iran: evidence for the separation of the Alborz from the Urumieh–Dokhtar magmatic arc. Geological Society of America Abstracts with Programs, v. 34, 331 p.
-Hastie, A.R., Kerr, A.C., Pearce, J.A. and Mitchell, S.F., 2007. Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram. J. Petrol., v. 48, p. 2341-2357.
-Hoffman, E.J., Mills, G.L., Latimer, J.S. and Quinn, J.G., 1984. Urban runoff as a source of polycyclic aromatic hydrocarbons to coastal waters. Environ. Sci. Technol., v. 18, p. 580-587.
-Huang, W.L. and Wyllie, P.J., 1981. Phase relationship of S-type granite with H2O to 35 kbar: muscovite granite from Harney Peak, South Dakota. Journal of Geophysical Research, v. 86, p. 10515-10529.
-Jung, S., Mezger, K. and Hoernes, S., 2004. Shear zone-related syenites in the Damara belt (Namibia): the role of crustal contamination and source composition. Contr. Mineral. Petrol., v. 148, p. 104-121.
-Kaul, P.F.T. and Cordiani, U.G., 2000. Geochemistry of Serra do Mar granitic magmatism and tectonic implications, southern Brazil. Revista Brasilera de Geosciencias v. 30(1), p. 115-119.
-Kepezhinskas, P., McDermott, F., Defant, M.J., Hochstaedter, A. and Drummond, M.S., 1997. Trace element and Sr–Nd–Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochimica et Cosmochimica Acta, v. 61, p. 577-600.
-King, P.L., White, A.J.R. and Chappell, B.W., 1997. Characterization and origin of aluminous Atype granites of the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, v. 36, p. 371-391.
-Kjarsgaard, B. and Hamilton, D.L., 1989. Carbonatite origin and diversity. Nature, v. 338, p. 547-548.
-Korobeinikova, A.N., Laajokib, K. and Gehor, S., 2000. Nepheline-bearing alkali feldspar syenite (pulaskite) in the Khibina pluton, Kola Peninsula, NW Russia: petrological investigation. J. Asian Earth Sci., v. 18, p. 205-212.
-Lameyre, J. and Bowden, P., 1982. Plutonic rock type series: discrimination of various granitoid series and related rocks. Journal of Volcanology and Geothermal Research, v. 14, p. 169-186.
-Le Maitre, R.W., 2002. Igneous Rocks: A Classification and Glossary of Terms/Recommendations of the International Union of Geological Sciences Sub commission on the Systematic of Igneous Rocks. Cambridge University Press, Cambridge, 252 p.
-Lescuyer, J.L. and Riou, R., 1976. Geologie de la region de Mianeh (Azerbaijan), Contribution d l, etude du Volcanisme tertiaire de l, Iran, These 3eme cycle, Grenoble, 234 p.
-Litvinovsky, B.A., Jahn, B.M., Zanvilevich, A.N. and Shadaev, M.G., 2002. Crystal fractionation in the petrogenesis of an alkali monzodiorite-syenite series: the Oshurkovo plutonic sheeted complex, Transbaikalia, Russia. Lithos, v. 64, p. 97-130.
-Litvinovsky, B.A., Zanvilevich, A.N., Wickham, S.M. and Steele, I.M., 1999. Origin of syenite magmas in A-type granitoid series: syenite-granite series from Transbaikalia. Petrology, v. 7, p. 483-508.
-Lordkipanidze, M.B., Meliksetian, B. and Djarbashian, R., 1989. Mesozoic-Cenozoic magmatic evolution of the Pontian–Crimean–Caucasian region. In: In: Raku’s, M., Dercourt, J., Nairn, A.E.M. (Eds.), IGCP Project No. 198: Evolution of the Northern Margin of Tethys. Mem. Soc. Geol. France, v. 154, p. 103-124.
-Lubala, R.T., Frick, C., Roders, J.H. and Walraven, F., 1994. Petrogenesis of syenites and granites of the Schiel Alkaline Complex, Northern Transvaal, Southern Africa. J. Geol., v. 102, p. 307-309.
-Martin, R.F. and Devito, C., 2005. The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting. Canadian Mineralogist, v. 43, p. 2027-2048.
-Meijers, M.J.M., Vrouwe, B., van Hinsbergen, D.J.J., Kuiper, K.F., Wijbrans, J., Davies, G.R., Stephenson, R.A., Kaymakci, N., Matenco, L. and Saintot, A., 2010. Jurassic arc volcanism on Crimea (Ukraine): implications for the paleo-subduction zone configuration of the Black Sea region. Lithos, v. 119, p. 412-426.
-Menzies, M., 1987. Alkaline rocks and their inclusions: a window on the earth’s interior. In: In: Fitton, J.G., Upton, B.G. (Eds.), Alkaline Igneous Rocks 30. Geological Society, London, p. 15-27.
-Mirnejad, H. and Bell, K., 2006. Origin and source evolution of Leucite Hills lamproites: Evidence from Sm-Nd-Pb-O isotopic composition. Journal of Petrology, v. 47, p. 2463-2489.
-Moayyed, M., Moazzena, M., Calagari, A.A., Jahangiri, A. and Modjarrad, M., 2008. Geochemistry and petrogenesis of lamprophyric dykes and the associated rocks from Eslamy peninsula, NW Iran: implications for deep-mantle metasomatism. Chem. Erde, v. 68, p. 141-157.
-Mohajjel, M. and Fergusson, C., 2000. Dextral transpression in Late Cretaceous continental collision zone, western Iran. J. Struct. Geol., v. 22, p. 1125-1139.
-Moinvaziri, H., 1985. Volcanism tertiary et quaternary en Iran, These d’Etat, Université Paris-Sud, Orsay.
-Moritz, R., Melkonyan, R., Selby, D., Popkhadze, N., Gugushvili, V., Tayan, R. and Ramazanov, V., 2016a. Metallogeny of the Lesser Caucasus: from arc construction to post-collision evolution. In: In: Richards, J. (Ed.), Tethyan Tectonics and Metallogeny, v. 19, p. 157-192.
-Moritz, R., Rezeau, H., Ovtcharova, M., Tayan, R., Melkonyan, R., Hovakimyan, S., Ramazanov, V., Selby, D., Ulianov, A., Chiaradia, M. and Putlitz, B., 2016b. Long-lived, stationary magmatism and pulsed porphyry systems during Tethyan subduction to post-collision evolution in the southernmost Lesser Caucasus, Armenia and Nakhitchevan. Gondwana Res., v. 37, p. 465-503.
-Morrison, G.W., 1980. Characterization and tectonic setting of shoshonite rocks association. Lithos, v. 13, p. 97-102.
-Motoki, A., Sichel, S.E., Vargas, T., Melo, D.P. and Motoki, K.F., 2015. Geochemical behavior of trace elements during fractional crystallization and crustal assimilation of the felsic alkaline magmas of the state of Rio de Janeiro, Brazil. Anais da Academia Brasileira de Ciências, v. 87, p. 1959-1979.
-Mushkin, A., Navon, O., Halicz, L., Hartmann, G. and Stein, M., 2003. The petrogenesis of A-type magmas from the Amram Massif, Southern Israel. J. Petrol., v. 44, p. 815-832.
-Newberry, R.J., Burns, L.E., Swanson, S.E. and Smith, T.E., 1990. Comparative petrologic evolution of the Sn and W granites of the Fairbanks-Circle area, Petrogenesis and Mineralising Processes. Geological Society of America, Special Paper, v. 246, p. 121-142.
-Okay, A.I. and Nikishin, A.M., 2015. Tectonic evolution of the southern margin of Laurasia in the Black Sea region. Int. Geol. Rev., v. 57, p. 1051-1076.
-Pearce, J., Harris, N.B.W. and Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granite rocks, Petrology., v. 25(4), p. 120-124.
-Pearce, J.A., 1983. The role of sub-continental lithosphere in magma genesis at destructive plate margins. In: Hawkesworth. C.J., Norry, M.J. Eds. Continental basalts and mantle xenoliths. Shiva, Nantwhich., p. 230-249.
-Peccerillo, A. and Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, v. 58, p. 63-81.
-Peccerillo, A. and Frezzotti, M.L., 2015. Magmatism, mantle evolution and geodynamics at the converging plate margins of Italy. J. Geol. Soc. Lond., v. 172, p. 407-427.
-Rezeau, H., Moritz, R., Leuthold, J., Moritz, R., Hovakimyan, S., Tayan, R. and Chiaradia, M., 2017. 30 Myr of Cenozoic magmatism along the Tethyan margin during Arabia-Eurasia accretionary orogenesis (Meghri-Ordubad pluton, southernmost Lesser Caucasus). Lithos. https://doi.org/10.1016/j.lithos.2017.07.007.
-Richards, J.P., 2015. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: from subduction to collision. Ore Geol. Rev., v. 70, p. 323-345.
-Richards, J.P. and Sholeh, A., 2016. The tethyan tectonic history and Cu-Au metallogeny of Iran. Soc. Econ. Geol. Spec. Publ., v. 19, p. 193-212.
-Rollinson, H.R., 1993. Using geochemical data: evaluation, presentation, interpretation, Longman Ltd. Pub., 352 p.
-Shellnutt, J.G., Zhou, M.F. and Zellmer, G.F., 2009. The role of Fe-Ti oxide crystallization in the formation of A-type granitoids with implications for the Daly gap: An example from the Permian Baima igneous complex, SW China. Chem. Geol., v. 259, p. 204-217.
-Steckeisen, A., 1979. Classsification and nomenclature of volcanic rocks, lamprophyres, carbonatite, and melilitic rocks.
-Stocklin, J., 1974. Possible ancient continental margins in Iran, The geology of continental margins, p. 873-887, Springer.
-Streckeisen, A. and Le Maitre, R.W., 1979. A chemical approximation to the modal QAPF classification of the igneous rocks. Neues Jahrbuch Mineral., Abhandlungen, v. 136, p. 169-206.
-Sun, S.S. and McDonough, W.F., 1989. A chemical and isotopic systematics of oceanic basalts: Implication for mantle composition and processes. In: Saunders, A. D., Norry M. J. (eds), Magmatism in oceanic basins. Geology. Soc. London. Spec. Pub., v. 42, p. 313-345.
-Sun, C.H. and Stern, R., 2001. Genesis of Mariana shoshonites: contribution of the subduction component. J. Geophys. Res., v. 106, p. 589-608.
-Sutcliffe, R.H., Smith, A.R., Doherty, W. and Barnett, R.L., 1990. Mantle derivation of Archean amphibole-bearing granitoid and associated mafic rocks: evidence from the southern Superior Province, Canada. Contrib. Mineral. Petrol., v. 105, p. 255-274.
-Temel, A., Gundogdu, M.N. and Gourgaud, A., 1998. Petrological and geochemical characteristics of Cenozoic high-K calc-alkaline volcanismin Konya, Central Anatolia, Turkey. Journal of Volcanology and Geothermal Research, v. 85, p. 327-354.
-Tepper, J.H., Nelson, B.K., Bergantz, G.W. and Irving, A.J., 1993. Petrology of the Chilliwack batholith, North Cascades, Washington: generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity. Contributions to Mineralogy and Petrology, v. 113, p. 333-351.
-Thompson, R.N., 1982. British Tertiary province. Scottish Journal of Geology, v. 18, p. 49-107.
-Turner, S., Amaud, N., Liu, J., Rogers, N., Hawkesworth, C., Harris, N., Kelley, S., Van Calsteren, P. and Deng, W., 1996. Post-collision, shoshonitic volcanism on the Tibetan plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. J. Petrol., v. 37, p. 45-71.
-Turner, S.P., Foden, J.D. and Morrison, R.S., 1992. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia. Lithos, v. 28, p. 151-179.
-Wang, Q., Li, J.W., Jian, P., Zhao, Z.H., Xiong, X.L., Bao, Z.W., Xu, J.F., Li, C.F. and Ma, J.L., 2005. Alkaline syenites in eastern Cathaysia (South China): link to Permian-Triassic transtension. Earth. Planet. Sci. Lett., v. 230(339), 354 p.
-Wolff, J.A., 2017. On the syenite-trachyte problem. Geology, v. 45, p. 1067-1070.
-Woolley, A.R. and Jones, G.C., 1987. The petrochemistry of the northern part of the Chilwa Alkaline province, Malawi. In: In: Fitton, J.G., Upton, B.G. (Eds.), Alkaline Igneous Rocks. 30. Geological Society, London, p. 335-355. Special publications.
-Woolley, A.R. and Kjarsgaard, B.A., 2008. Carbonatite occurrences of the world: Map and database. Geological Survey of Canada, open file 5796.
-Wu, F.Y., Jahn, B.M., Wilde, S.A., Lo, C.H., Yui, T.F., Lin, Q., Ge, W.C. and Sun, D.Y., 2003. Highly fractionated I-type granites in NE Chine, I: geochronology and petrogenesis. Lithos, v. 66, p. 241-273.
-Xu, C., Chakhmouradian, A.R., Kynický, J., Li, Y.X., Song, W.L. and Chen, W., 2019. A Paleoproterozoic mantle source modified by subducted sediments under the North China craton. Geochim. Cosmochim. Acta., v. 245, p. 222-239.
-Zanvilevich, A.N., Litvinovsky, B.A., Wickham, S.M. and Bea, F., 1995. Genesis of alkaline and peralkaline syenite-granite series, the Khartonovo pluton (Transbaikalia, Russia). J. Geol., v. 103, p. 127-145.
-Zhang, X., Zhang, H., Jiang, N., Zhai, M. and Zhang, Y., 2010. Early Devonian alkaline intrusive complex from the northern North China craton: a petrological monitor of post-collisional tectonics. J. Geol. Soc. Lond., v. 167, p. 717-730.
-Zhao, G.C., Wilde, S.A., Cawood, P.A. and Lu, L.Z., 1999. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics, v. 310, p. 37-53.