-بابایی، ا. و مجرد، م.، 1396. پترولوژی و ژئوشیمی گابروهای دره بنار زیوه، جنوب ارومیه، بیست و پنجمین همایش بلورشناسی و کانی شناسیایران، یزد، ایران.
-حاج ملاعلی، ا. و شهرابی، م.، 1385. نقشه 1:100000 سیلوانا، شماره 4964، سازمان زمینشناسی کشور، تهران.
-رضایی موسی درق، ع. و مجرد، م.، 1396. سنگهای اولترامافیک افیولیت سیلوانا جنوب ارومیه، بیست و پنجمین همایش بلورشناسی و کانیشناسی ایران، یزد، ایران.
-عبدلله، ک. و مجرد، م.، 1396. ژئوشیمی سرپانتینیتهای گیسیان-زیوه، جنوب ارومیه، سی و ششمین همایش ملی و سومین کنگره بینالمللی علوم زمین، تهران، ایران.
-علیزاده، ا.، 1390. سن جایگیری آمیزه رنگی جنوب غرب ارومیه، سی امین گردهمایی علوم زمین، تهران، ایران.
-گیلانی، ن. و مجرد، م.، 1396. پترولوژی و ژئوشیمی گرانیتوئید سوسن آباد زیوه، جنوب ارومیه، سی و ششمین همایش ملی و سومین همایش بین المللی علوم زمین، تهران، ایران.
-مجرد، م.، مؤذن، م. و مؤید، م.، 1389. مطالعه سنگ کل متاپلیتهای شاهیندژ: زادگاه رسوبی و پاراژنزهای کانیایی، پترولوژی، دوره 1، شماره 4، ص 73-88.
-Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution: American journal of science, v. 304(1), p. 1-20.
-Allen, M.B., Kheirkhah, M., Emami, M.H. and Jones, S.J., 2011. Right-lateral shear across Iran and kinematic change in the Arabia—Eurasia collision zone: Geophysical Journal International, v. 184(2), p. 555-574.
-Azizi, H. and Asahara, Y., 2013. uvenile granite in the Sanandaj–Sirjan Zone, NW Iran: Late Jurassic–Early Cretaceous arc–continent collision:
International Geology Review, v. 55, p. 1523-1540.
-Balen, D., Massonne, H.J. and Lihter, I., 2017. Alpine metamorphism of low-grade schists from the Slavonian Mountains (Croatia): new P-T and geochronological constraints: International Geology Review, DOI: 10.1080/00206814.2017.1328710
-Berberian, M. and King, G.C. P., 1981. Towards a paleogeography and tectonic evolution of Iran: Canadian journal of earth sciences, v. 18(2), p. 210-265.
-Bhatia, M.R., 1983. Plate tectonics and geochemival composition of sandstones: Journal of Geology, v. 92, p. 181-193.
-Boedo, F.L., Willner, A.P., Vujovich, G.I. and Massonne, H.J., 2016. High pressure/low temperature metamorphism in the collision zone between the Chilenia and Cuyania microcontinents (Western Precordillera, Argentina): Journal of South American Earth Sciences, v. 72, p. 227-240. doi:10.1016/j.jsames.2016.09.009
-Bourdelle, F. and Cathelineau, M., 2015. Low-temperature chlorite geothermometry: A graphical representation based on a T–R2+–Si diagram: European Journal of Mineralogy, v. 27, p. 617-626. doi:10.1127/ejm/2015/0027-2467
-Calderón, M., Fosdick, J.C., Warren, C., Massonne, H.J., Fanning, C.M., Fadel, C.L., Schwanethal, J., Fonseca, P.E., Galaz, G., Gaytán, D. and Hervé, F., 2012. The low-grade Canal de las Montañas Shear Zone and its role on the tectonic emplacement of the Sarmiento Ophiolitic Complex and Late Cretaceous Patagonian Andes orogeny, Chile: Tectonophysics, v. 524-525, p. 165-185. doi:10.1016/ j.tecto. 2011.12.034
-Cloos, M., 1984. Flow mélanges and the structural evolution of accretionary wedges, in Mélanges—their nature, origin, and significance: Special Paper of the Geological Society of America, v. 198, p. 71-79.
-Cope, T., Ritts, B.D., Darby, B.J., Fildani, A. and Graham, S.A., 2005. Late Paleozoic sedimentation on the Northern margin of the North China Block: implications for regional tectonics and climate Change: International Geology Review, v. 47, p. 270-296.
-Cox, R., Lowe, D.R. and Cullers, R.L., 1995. The influence of sediment recycling and basement composition on evolution of mud rock chemistry in the southwestern United States: Geochim Cosmochim Acta, v. 59, p. 2919-2940. https ://doi.org/10.1016/0016-7037(95)00185-9
-Degraaff-surpless, K., Graham, S.A., Wooden, J.L. and McWiliams, M.O., 2002. Detrital zircon provenance analysis of the Great Valley Group, California: evolution of an arc-forearc system: Geology Society of American Bulltain, v. 114, p. 1564-1580.
-Fedo, C.M., Nesbitt, H.W. and Young, G.M., 1995. Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with impilications for paleo weathering conditions and provenance: Geology, v. 23, p. 921-924.
-Floyd, P.A. and Leveridge, B.E., 1987. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones: Journal of Geological Society of London, v. 144, p. 531-542.
-Floyd, P.A., Winchester, J.A. and Park, R.G., 1989. Geochemistry and tectonic setting of Lewisian clastic metasediments from the early Proterozoic Lock Marie Group of Gairlock, Scottland: Precambrian Research, v. 45, p. 203-214.
-García-Ramírez, C.A., Casadiegos-Agudelo, L. and Castellanos-Meléndez, M.P., 2019. Petrology and geochemistry of the Silgara Schists in the Silos area, Santander Massif, Colombia: Revista DYNA, v. 86(209), p. 271-280.
-Garcia, D., Fonteilles, M. and Moutte, J., 1994. Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites: Journal of Geology, v. 102, p. 411-322.
-Garzanti, E., Doglioni, C., Vezzoli, G. and Ando, S., 2007. Orogenic belts and orogenic sediment Provenance: Journal of Geology, v. 115, p. 315-334.
-Herron, M.M., 1988. Geochemical classification of terrigenous sands and shales from core or log data: Journal of Sedimentary Petrology, v. 58, p. 820-829.
-Hofmann, A., 2005. The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton greenstone belt: implications for tectonic, hydrothermal and surface processes during mid-Archaean times: Precambrian Research, v. 143, p. 23-49.
-Holland, T.J.B. and Powell, R., 1998. An internally consistent thermodynamic dataset for phases of petrological interest: Journal of Metamorphic Geology, v. 16, p. 309-343. doi:10.1111/j.1525-1314.1998.00140.x
-Karig, D.E. and Sharman, G.F., 1975. Subduction and accretion in trenches: Geological Society of American Bulletin, v. 86, p. 377-389.
-Kasanzu, C., Maboko, M.A.H. and Manya, S., 2008. Geochemistry of fine-grained clastic sedimentary rocks of the Neoproterozoic Ikorongo Group, NE Tanzania: Implications for provenance and source rock weathering: Precambrian Research, v. 164, p. 201-213.
-Kutterolf, S., Diener, R., Schacht, U. and Krawinkel, H., 2008. Provenance of the Carboniferous Hochwipfel Formation-Geochemistry versus petrography: Sedimentary Geology, v. 203, p. 246-266.
-Lanari, P., Wagner, T. and Vidal, O., 2014. A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO–FeO–Al2O3–SiO2–H2O: Applications to P–T sections and geothermometry: Contribution to Mineralogy and Petrology, v. 167, p. 1–19. doi:10.1007/s00410-014-0968-8
-Long, X., Sun, M., Yuan, C., Xiao, W. and Cai, K., 2008. Early Paleozoic sedimentary record of the Chinese Altai; Implications for its tectonic evolution: Sedimentary Geology, v. 208, p. 88-100.
-Lo Pò, D. and Braga, R., 2014. Influence of ferric iron on phase equilibria in greenschist facies assemblages: The hematiterich metasedimentary rocks from the Monti Pisani (Northern Apennines): Journal of Metamorphic Geology, v. 32, p. 371–387. doi:10.1111/jmg.2014.32.issue-4
-Lo Pò, D., Braga, R. and Massonne, H.J., 2016. Petrographic, mineral and pressure-temperature constraints on phyllites from the Variscan basement at Punta Bianca, Northern Apennines, Italy: Italian Journal of Geosciences, v. 135(3), p. 489-502. doi:10.3301/IJG.2015.29
-Maas, and McCulloch, 1991. The provenance of Archean clastic metasediments in the Narryer Gneiss Complex, Western Australia: Trace element geochemistry, Nd isotopes and U–Pb ages for detrital zircons: Geochimica et Cosmochimica Acta, v. 55, p. 1915–1932.
-Maynard, J.B., Valloni, R. and Yu, H., 1982. Composition of modern deep sea sands from arc-related basin: Geology Society of London, Special Publication, v. 10, p. 551-561.
-McLennan, S.M., 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust: Geochemistry Geophysics Geosystems, v. 2, p. 1021.doi:10.1029/2000GC000109
-Meszaros, E., Verga, A., Raucsik, B., Benko, Z., Heincz, A. and Hauzenberger, C.A., 2019. Provenance and Variscan low‑grade regional metamorphism recorded in slates from the basement of the (SW Hungary): International Journal of Earth Sciences, v. 108, p. 1571-1593.
-Middlemost, E.A.K., 1991. Towards a comprehensive classification of igneous rocks and magmas: Earth Sciences Review, v. 31, p. 73-87.
-Nadimi, A., 2010. Active strike-slip faults in the central part of the Sanandaj-Sirjan Zone of Zagros Orogen (Iran): Doctoral dissertation, PhD thesis, Faculty of Geology, University of Warsaw, Poland.
-Nadimi, A. and Konon, A., 2012. Strike-slip faulting in the central part of the Sanandaj-Sirjan Zone, Zagros Orogen, Iran: Journal of Structural Geology, v. 40, p. 2-16.
-Nesbitt, H.W. and Young, G.M., 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations: Geochimica et Cosmochimica Acta, v. 48, p. 1523-1534.
-Pettijohn, F.J., Potter, P.E. and Siever R., 1972. Sand and sandstone. Springer- Verlag, New York.
-Potter, P.E., Maynard, J.B. and Depetris, P.J., 2005. Mud and Mudstones: Introduction and Overview: Heidelberg, Springer-Verlag, 297 p.
-Roser, B.P. and Korsch, R.J., 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 contents and K2O/Na2O ratio: Journal of Geology, v. 94, p. 635-650.
-Roser, B.P. and Korsch, R.J., 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data: Chemical Geology, v. 67, p. 119-139.
-Sengor, A.M.C and Okurogullari, A.H., 1991. The role of accretionary wedges in the growth of continents: Asiatic examples from Argand to plate tectonics: Eclogae Geologicae Helvetiae, v. 84, p. 535-597.
-Şengör, A.C., Özeren, M.S., Keskin, M., Sakınç, M., Özbakır, A.D. and Kayan, I., 2008. Easte Turkish high plateau as a small Turkic-type orogen: Implications for post-collisional crust-forming processes in Turkic-type orogens: Earth-Science Reviews, v. 90(1-2), p.1-48.
-Shaw, D.M., 1956. Geochemistry of pelitic rocks: Part III. Major elements and general geochemistry: Geology Society of American Bulltain, v. 67, p. 919-934.
-She, Z.B., Ma, C.Q., Mason, R., Li, J.W., Wang, G.C. and Lei, Y.H., 2006. Provenance of the Triassic Songpan-Ganzi flysch, west China: Chemical Geology, v. 231, p. 159-175.
-Sheikholeslami, M.R., 2015. Deformations of Palaeozoic and Mesozoic rocks in southern Sirjan, Sanandaj–Sirjan Zone, Iran: Journal of Asian Earth Sciences, v. 106, p. 130-149.
-Slack, J.F., Dumoulin, J.A., Schmidt, J.M., Young, L.E. and Rombac, C.S., 2004. Paleozoic sedimentary rocks in the red dog Zn-Pb-Ag district and vicinity, Western Brooks Range, Alaska: provenance, deposition, and metallogenic significance: Economic Geology, v. 99, p. 1385-1414.
-Spear, F.S., 1993. Metamorphic phase equilibria and pressuretemperature- time paths: Washington, DC, Mineralogical Society of America Monograph, 799 p.
-Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, in Saunders, A.D., and Norry, M.J., eds., Magmatism in Ocean Basins, v. 42: Geological Society London Special Publication, London, p. 313-345.
-Sun, W.H., Zhou, M.F., Yan, D.P., Li, J.W. and Ma, Y.X., 2008. Provenance and tectonic setting of the Neoproterozoic Yanbian Group, western Yangtze Block (SW China): Precambrian Research, v. 167(1-2), p. 213-236.
-Tarbuck, E.J. and Lutgens, F.K., 1994. Earth science, 7th ed.: New York, NY, Macmillan College Publishing Company, 659 p.
-Taylor, S.R. and McLennan, S.M., 1981. The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks: Phil Trans R Soc, v. A301, p. 381-399.
-Toulkeridis, T., Clauer, N., Kroner, A., Reimer, T. and Todt, W., 1999. Characterization, provenance, and tectonic setting of Fig Tree graywackes from the Archean Barberton Greenstone Belt, South Africa: Sedimentary Geology, v. 124, p. 113-129.
-Vergara, M., Levi, B., Nystrom, J.O. and Cancino, A., 1995. Jurassic and Early Cretaceous island arc volcanism, extension, and subsidence in the Coat Range of central Chile: Geology Society of American Bulltain, v. 107, p. 1427-1440.
-Vidal, O. and Parra, T., 2000. Exhumation paths of high-pressure metapelites obtained from local equilibria for chloritephengite assemblages: Geological Journal, v. 35, p. 139- 161. doi:10.1002/(ISSN)1099-1034.
-Werner, C.D., 1987. Saxonian granulites-igneous or lithoigneous: a contribution to the geochemical diagnosis of the original rock in high-metamorphic complexes: Zfl-Mitteilungen, v. 133, p. 221-250.
-Willner, A.P., Maresch, W.V., Massonne, H.J., Sandritter, K. and Willner, G., 2016. Metamorphic evolution of blueschists, greenschists, and metagreywackes in the Cretaceous Mt. Hibernia Complex (SE Jamaica): European Journal of Mineralogy, v. 28, p. 1059-1078. doi:10.1127/ejm/2016/0028-2561
-Zheng, Y.F., Zhou, J.B., Wu, Y.B. and Xie, Z., 2005. Low-Grade Metamorphic Rocks in the Dabie-Sulu Orogenic Belt: A Passive-Margin Accretionary Wedge Deformed during Continent Subduction: International Geology Review, v. 47, p. 851-871.