زمین‌شناسی، مراحل کانی‌سازی و زمین‌شیمی هاله‌های دگرسانی کانسار مس-مولیبدن (±نقره) سنج (شمال کرج)، کمان ماگمایی البرز

نوع مقاله : علمی -پژوهشی

نویسندگان

1 عضو هیات علمی دانشگاه بوعلی سینا

2 عضو هیات علمی دانشگاه خوارزمی

3 دانشگاه لرستان

چکیده

کانسار مس-مولیبدن سنج واقع در بخش مرکزی کمان ماگمایی البرز و شمال استان البرز (کرج) قرار دارد. منطقه سنج به طورکلی متشکل از سنگ‌های نفوذی مافیک تا حدواسط ترشیری و انواع سنگ‌های آذرآواری است. سیل نفوذی سد کرج با ترکیب مونزوگابرو، مونزودیوریت و دیوریت به سن ائوسن بالایی در سنگ‌های آذرآواری سازند کرج نفوذ کرده و در مجاورت آن کانی‌سازی استوک‌ورک-انتشاری عناصر مس و مولیبدن (±نقره و طلا)، رخداده است. کانه‌‌های سولفیدی (کالکوپیریت، بورنیت، مولیبدنیت و پیریت)، اکسیدی (مگنتیت و هماتیت) و کربناته (مالاکیت و آزوریت) مهم­ترین پاراژنز کانی‌سازی در منطقه هستند. کانی‌سازی کوارتز-سولفیدی استوک‌ورک به­عنوان غنی‌ترین بخش کانسنگ با متوسط عیارهای 5/2 درصد مس و 2/0 درصد مولیبدن همراه با دگرسانی پتاسیک-فیلیک در میزبان توف پورفیری قابل مشاهده است. کانی‌سازی انتشاری نیز متشکل از کانی‌های پراکنده کالکوپیریت و مولیبدنیت با متوسط عیارهای مس 2/1 درصد و مولیبدن 08/0 درصد همراه با دگرسانی آرژیلیک حدواسط در میزبان آندزیت توف پورفیری رخداده است. پهنه غنی‌سازی برون‌زاد با گسترش کم، متشکل از کانسنگ اکسی-هیدروکسیدی با کانی‌سازی ضعیف مس و کانسنگ سولفیدی غنی‌شده (جانشینی) با بیشینه عیار مس 8/2 درصد مشخص می‌شود. دگرسانی‌های مگنتیت-بیوتیت (سیلیکات پتاسیم)، پتاسیک-فیلیک (مجموعه فلدسپار ‌پتاسیک-بیوتیت-سریسیت-کوارتز±پیریت)، آرژیلیک حدواسط (مجموعه کائولینیت-ایلیت±کوارتز±کلسیت) و پروپیلیتیک (مجموعه اپیدوت-کلریت-لامونتیت-کلسیت±پیریت)، دگرسانی‌های اصلی کانسار سنج هستند. براساس مطالعات زمین‌شیمی دگرسانی، بالاترین تمرکز عیاری عناصر کانه‌ساز مس و مولیبدن در دگرسانی‌های پتاسیک-فیلیک با حضور کانی‌سازی کوارتز-سولفیدی استوک‌ورک صورت گرفته و دگرسانی‌های آرژیلیک حدواسط و پروپیلیتیک از عیار کمتری برخوردارند.

کلیدواژه‌ها


عنوان مقاله [English]

Geology, mineralization stages and alteration assemblage geochemistry of Senj Cu-Mo (±Ag) deposit (northern Karaj), Alborz Magmatic Arc

چکیده [English]

The Senj Cu-Mo deposit is located in the central part of the Alborz Magmatic Arc (AMA), northern Alborz province (Karaj). Geology of the Senj area composed of mafic to intermediate Tertiary intrusive rocks and various types of volcaniclastic rocks. The early stage volcaniclastic rocks of Karaj Formation were intruded by the Oligocene Karaj Dam basement sill (composed of monzogabbro, monzodiorite and diorite) and Cu-Mo (±Ag and Au) mineralization occurred in contact of this rocks. Ore minerals such as sulfides (chalcopyrite, bornite, molybdenite, and pyrite), oxides (magnetite and hematite), and carbonates (malachite and azurite) are the main mineralogical paragenesis in the area. Stockwork quartz-sulfide mineralization as the richest part of ore body have average grade of 3.0 wt% Cu and 0.2 wt% Mo occur in porphyritic tuff host rock with potassic-phyllic alteration. The disseminated mineralization consist of chalcopyrite and molybdenite disseminated minerals with average grade of 1.8 wt% Cu and 0.1 wt% Mo occur in the porphyritic andesite tuff and intermediate argillic alteration. The supergene enrichment zone with limited exposure is composed of oxide-hydroxide upper ore with low grade Cu mineralization and sulfidation replacement lower ore zone with highest grade of 2.8 wt% Cu. The magnetite-biotite (K-silicate), potassic-phyllic (K-feldsapr-biotite-sericite-quartz±pyrite), intermediate argillic (kaolinite-illite±quartz±calcite) and propylitic (epidote-chlorite-laumontite-calcite±pyrite) are the main alteration assemblages related to mineral deposit. Based on geochemistry of alteration assemblages, the highest concentration of Cu and Mo mineralized elements occurred in the potassic-phyllic alteration and the intermediate argillic alteration and propylitic alteration have lower ore grade.

  1. -امینی، ب.، 1993. گزارش برگه 1:100000 تهران، انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور.
  2. -حیات‌الغیبی، م.، 1390. مطالعات کانی‌شناسی، زمین‌شیمی و سیالات درگیر کانسار مس-مولیبدن سنج (شمال کرج)، پایان‌نامه کارشناسی‌ارشد، دانشگاه خوارزمی تهران، 170 ص.
  3. -حیات‌الغیبی، م.، مهرابی، ب. و شاهرخی، س.و.، 1389. زمین‌شیمی و دگرسانی مرتبط با کانه‌زایی رگه-رگچه‌ای و انتشاری کانسار مس-مولیبدن سنج (شمال کرج)، بیست و نهمین گردهمایی علوم زمین، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
  4. -خویی، ن.، قربانی، م. و تاج بخش، پ.، 1378. کانسارهای مس در ایران، طرح تدوین کتاب، شماره 68، سازمان زمین‌شناسی و اکتشافات معدنی کشور، 421 ص.
  5. -شرکت مهندسین مشاور پیچاب کاوش.، 1386. گزارش اکتشافات تفصیلی معدن مولیبدن سنج.
  6. -شرکت تحقیقات و کاربرد مواد معدنی ایران.، 1388. گزارش عملیات حفاری اکتشاف کانسار پلی‌متال سنج (استان تهران).
  7. -قربانی، م.، 1386. زمین‌شناسی اقتصادی ذخایر معدنی و طبیعی ایران، انتشارات آرین زمین، 515 ص.
  8. -مؤمن‌زاده، م. و رشید نژاد، ن.، 1364. گزارش مختصری از معدن متروکه مس و مولیبدن سنج، سازمان زمین‌شناسی کشور.
  9. -مهدی‌زاده، س.، 1995. گزارش برگه 1:100000 کرج، انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور.
  10. -نوگل سادات، م.ا. و الماسیان، م.، 1993. نقشه تکتونیک ایران در مقیاس 1:1000000، سازمان زمین‌شناسی کشور.
  11. -ولی‌زاده، م.، 1366. بررسی پترولوژی توده آذرین بنیان سد کرج، نشریه علوم دانشگاه تهران، جلد 15، شماره 16، ص 5-28.
  12. -ولی‌زاده، م.، عبدالهی، ح.ر. و صادقیان، م.، 1387. بررسی زمین‌شناختی توده‌های نفوذی عمده البرز مرکزی، فصلنامه علوم زمین، سال هفدهم، شماره 67، ص 182-197.
  13. -Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monie, P., Meyer, B. and Wortel, M.J.R., 2011. Zagros orogeny: a subduction-dominated process: Geological Magazine, v. 148, p. 692-725.
  14. -Allen, M.B., Kheirkhah, M., Neill, I., Emami, M.H. and Mcleod, C.L., 2013. Generation of arc and within-plate chemical signatures in collision zone magmatism: quaternary lavas from Kurdistan Province, Iran: Journal of Petrology, v. 0, p. 1-25.
  15. -Allen, M.B., Ghassemi, M.R., Shahrabi, M. and Qorashi, M., 2003. Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran: Journal of Structural Geology, v. 25, p. 659-672.
  16. -Brathwaite, R.L. and Faure, K., 2002. The Waihi epithermal gold-silver-base metal sulfide-quartz vein system, New Zealand: temperature and salinity controls on electrum and sulfide deposition: Economic Geology, v. 97, p. 269-290.
  17. -Dedval, E., 1967. Zur Geologie des mittleren und lnteren Karaj Tales zental Elburz (Iran), Mitt. Geological Institute, E.T.H. University Zurrich, v. 76, p. 125.
  18. -Fournier, R.O., 1999. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 94, p. 1193-1211.
  19. -Hannington, M.D., Poulsen, K.H., Thompson, J.F.H. and Sillitoe, R.H., 1999. Volcanogenic gold in massive sulfide environment: Reviews in Economic Geology, v. 8, p. 325-356.
  20. -Hartley, A.J. and Rice, C.M., 2005. Controls on supergene enrichment of porphyry copper deposits in the Central Andes: A review and discussion: Mineralium Deposita, v. 40, p. 515-525.
  21. -Hassanzadeh, J., Axen, G.J., Guest, B., Stockli, D.F. and Ghazi, A.M., 2004. The Alborz and NW Urumieh–Dokhtar magmatic belts, Iran: rifted parts of a single ancestral arc, abstracts with programs: Geological Society of American, v. 36, 434. p.
  22. -Hemeley, J.J., Cygan, G.L., Fein, J.B. and Robinson, G.R., 1992. Hydrothermal ore forming processes in the light of studies in rock buffered systems, Iron-Copper-Lead-Zinc sulfide solubility relation: Economic Geology, v. 87, p. 1-22.
  23. -Keith, J.D., Christiansen, E.H. and Carten, R.B., 1993. The genesis of giant porphyry molybdenum deposits, in Whiting, B.H., Hodgson, C.J., and Mason, R., eds., Giant Ore Deposits: The Society of Economic Geologists, Special Publication Number, v. 2, p. 285-317.
  24. -Maghdour-Mashhour, R., Esmaeily, D., Shabani, A.A.T., Chiaradia, M. and Latypov, R., 2015. Petrology and geochemistry of the Karaj Dam basement sill: Implications for geodynamic evolution of the Alborz magmatic belt: Chemie der Erde, v. 75, p. 237-260.
  25. -McQuarrie, N., Stock, J.M., Verdel, C. and Wernicke, B.P., 2003. Cenozoic evolution of Neotethys and implications for the causes of plate motions: Geophysics Research Letter, v. 30, p. 2036-2045.
  26. -Poulsen, K.H., Robert, F. and Dube´, B., 2000. Geological classification of Canadian gold deposits: Geological Survey Canadian Bulletin, v. 540, p. 9-29.
  27. -Reed, M.H., 1997. Hydrothermal alteration and its relationship to ore fluid composition, In H.L. Barnes (ed.), Geochemistry of Hydrothermal Ore Deposits, John Wiley, p. 303-366.
  28. -Reich, M., Palacios, C., Vargas, G., Luo, S., Cameron, E.M., Leybourne, M.I., Parada, M.A., Zúñiga, A. and You, C.F., 2009. Supergene enrichment of copper deposits since the onset of modern hyperaridity in the Atacama Desert, Chile: Mineralium Deposita, v. 44, p. 497-504.
  29. -Richards, J.P., 2003. Tectono-magmatic precursors for porphyry Cu–(Mo–Au) deposit formation: Economic Geology, v. 98, p. 1515-1533.
  30. -Richards, J.P., 2009. Post subduction porphyry Cu–Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere: Geology, v. 37, p. 247-250.
  31. -Richards, J.P., 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins: Ore Geology Reviews, v. 40, p. 1-26.
  32. -Rusk, B., Reed, M.H. and Dilles, J.H., 2008. Fluid Inclusion Evidence for Magmatic-Hydrothermal Fluid Evolution in the Porphyry Copper-Molybdenum Deposit at Butte, Montana: Economic Geology, v. 103, p. 307-334.
  33. -Sillitoe, R.H. and Hedenquist, J.W., 2003. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits, in Simmons, S.F., and Graham, I., eds., Volcanic, Geothermal, and Ore-Forming Fluids; Rulers and Witnesses of Processes within the Earth: Economic Geology, Special Publication, v. 10, p. 315-343.
  34. -Števko, M., Sejkora, J. and Bačik, P., 2011. Mineralogy and origin of supergene mineralization at the Farbište ore occurrence near Poniky, central Slovakia: Journal of Geosciences, v. 57, p. 273-298.
  35. -Stöcklin, J., 1974. A-Northern Iran: Alborz Mountains, Meszoic–Cenozoic orogenic Belt, data for orogenic studies, Geological Society London Special Publications 4, p. 213-234 (Collec. Ed. A. M.Spenncer, scottish Academic press).
  36. -Thompson, M. and Howarth, R.J., 1976. Duplicate analysis in geochemical practice (2 parts): Analyst, v. 101, p. 690-709.
  37. -Verdel, C., Wernicke, B.P., Hassanzadeh, J. and Guest, B., 2011. A Paleogene extensional arc flare-up in Iran, Tectonics, v. 30, p. 1-20.
  38. -Vincent, S.J., Allen, M.B., Ismail-Zadeh, A.D., Flecker, R., Foland, K.A. and Simmons, M.D., 2005. Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region: Geological Society of American Bulltein, v. 117, p. 1513-1533.
  39. -Weis, P., 2015. The dynamic interplay between saline fluid flow and rock permeability in magmatic-hydrothermal systems: Geofluids, v. 15, p. 350-371.
  40. -Whitney, D.L. and Evans, B.W., 2010, Abbreviations for names of rock-forming minerals: American Mineralogist, v. 95, p. 185-187.